

International Journal of Research in Medical and Basic Sciences
Volume 5 Issue 9, September 2019 ISSN: 2455-2569 Impact Factor: 4.457
Journal Homepage: http://mbsresearch.com, Email: mbsresearchp@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal

38 International Journal of Research in Medical and Basic Sciences

:http://mbsresearch.com, Email: mbsresearchp@gmail.com

APPLICATIONS OF MATHEMATICS IN COMPUTER SCIENCE

Dr. Pankaj Shrivastava,

Assistant Professor, Department of Mathematics, Mumbai University at Rizvi College of Arts

Science and Commerce Bandra, West Mumbai -50, Maharashtra

Abstract: There is evidence that the day-to- day practice of computer science involves little if

any use of mathematics, despite numerous connections between the disciplines. This gap

between math’s practical and intellectual roles in computer science leads to an awkward place

for mathematics in undergraduate computer science curricula required mathematics courses

align poorly with the needs of computer science, and students study lots of math but relatively

few computer science courses use it. Computer science graduates are therefore unwilling and

unable to apply mathematics on the job. Fortunately, small local changes can strike directly at

major contributors to the problem.

Introduction:

Scientific and engineering disciplines generally are closely coupled to mathematics. The natural

sciences make mathematical models of the phenomena they study; both the natural and social

sciences rely on statis- tics to tease meaning out of raw data; engineers depend on mathematical

models at all stages of system design, construction, and maintenance. The one pair of

exceptions to this rule appears to be computer science and soft- ware engineering. Practicing

software developers make little use of mathematics [20, 31], and conventional wisdom says the

same of computer science students. Yet it would be very strange if the relationship between

computer science, software engineering, and mathematics were really as loose as it seems. At

the very least it would be suspicious for computer science and software engineering to be the

only non-mathematical members of the science and engineering family; at the worst it would be

downright dangerous for the disciplines to reject methods that characterize the fields whose

names they use.

 This paper argues that, although the day-to-day practice of computing often requires little if

any mathematics, there are nonetheless important connections between computer science,

software engineering, and mathematics. The next section discusses the roles mathematics plays

in computer science, including how specific mathematical topics interact with specific computer

science topics, and how mathematical reasoning complements computer science reasoning. The

third section explores the role mathematics plays in computer science education and analyzes

the disparity between its role in the general discipline and its role in education. A brief

conclusion then summarizes the main points and their implications for computer science

curricula.

 Although the rest of the paper focuses on “computer science,” we use the term generically

rather than to identify a single precise discipline: our ultimate concern is with the education of

computing professionals, most of whom still receive that education through a program that

International Journal of Research in Medical and Basic Sciences
Volume 5 Issue 9, September 2019 ISSN: 2455-2569 Impact Factor: 4.457
Journal Homepage: http://mbsresearch.com, Email: mbsresearchp@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal

39 International Journal of Research in Medical and Basic Sciences

:http://mbsresearch.com, Email: mbsresearchp@gmail.com

identifies itself as “computer science.” Our argument and conclusions apply to software

engineering as well as to computer science.

Mathematics’ Role in Computer Science:

Computer scientists use math in their professional lives in several ways. First, mathematics

provides the theoretical basis for many subfields of computer science, and important analytic

tools for others; computer scientists thus apply specific mathematical topics to specific

computing problems. More generally, mathematics pro- vides a framework for reasoning about

computing and computing problems, and even more broadly, provides a mental discipline for

solving those problems.

Specific Mathematical Topics:

It is reasonably easy to identify individual pieces of mathematics that find use in specific areas of

computing (e.g., “Boolean algebra can be used to manipulate conditional expressions”). What is

hard is identifying an appropriate level of detail at which to analyze computing’s uses of

mathematics, and imposing some standard of completeness on that analysis. In an attempt to do

these things, we used the 2012 ACM computing classification system [19] as a guide to the

subject matter that makes up “computer science,” and attempted to identify the mathematics that

is important in each top-level category. To recognize “important” mathematics, we looked for

references to mathematics in the classification system itself, we consulted books that are

considered definitive references within some of the categories [7, 10, 14, 28], and we drew on

our own knowledge. Note that we excluded the “general and reference” category from our

analysis as orthogonal to that analysis, and “mathematics of computing” because our goal was

essentially to match its elements to the other categories. The value of this approach is that it

brings some objectivity to the process of aligning mathematics and computer science; the price

of that objectivity is that everyone will no doubt see ways in which the alignment differs from

their personal perceptions. We offer the approach as a first step in developing a comprehensive

understanding of what math is important for computer science, but certainly don’t expect our

analysis to be the last word on the subject. only where a mathematical topic occurs particularly

prominently or in multiple places within a category. Even so, because the categories are very

broad, it is entirely possible to work within a category without encountering all of the

mathematics we associate with it. This phenomenon is particularly pronounced in the

“computing methodologies” category, which includes a mathematically diverse set of topics. On

the other hand, as looking at ACM article classifications will show, the classification system is

designed so that most computing activities have multiple, intersecting, classifications. Computer

scientists thus seldom work within just one classification category at a time, but more commonly

work in several simultaneously, and therefore may draw on the mathematics associated with

several categories at once.

Figure 1 makes it clear that there are myriad connections be- tween mathematics and computer

science. However, the degree of connectivity is not uniform. The most-connected mathematical

topic by far is probability and statistics, reflecting the widespread appearance of performance and

reliability analyses in many computer science categories (and also see Sahami [25] for additional

International Journal of Research in Medical and Basic Sciences
Volume 5 Issue 9, September 2019 ISSN: 2455-2569 Impact Factor: 4.457
Journal Homepage: http://mbsresearch.com, Email: mbsresearchp@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal

40 International Journal of Research in Medical and Basic Sciences

:http://mbsresearch.com, Email: mbsresearchp@gmail.com

reasons why probability is important in computer science). Other highly connected mathematical

topics include propositional/predicate logic (which we consciously lump together because it is

hard Figure 1 shows our association of mathematical topics (blue) with computing classification

system categories (yellow). We show associations

Figure 1: Mathematics associated with computer science areas. (Note 1: We include in “set

theory” functions and relations as associations between sets, as well as the basic definitions of

and operations on sets.

Note 2: “Counting” includes standard combinatorics concepts such as combinations and

permutations, as well as such techniques for evaluating counts as summations and recurrence

relations.)

to separate them in the computing classification system) and proof methods. Many of the

associations involving these two topics arise because formal approaches to specification or

verification are pervasive in the computing classification scheme - for specification or

verification of network protocols, software designs and implementations, security properties, etc.

These formal techniques lead to associations with logic, proofs, or set theory according to how

the formal tools are used.

Certain computing topics also have much higher connectivity than others. Not surprisingly,

“theory of computation,” which includes mathematical models of computation plus analysis of

● Whenever problems are put forward or solutions proposed, users should ask what

assumptions are being made and how those assumptions might impact any results

obtained or program behaviors.

● When an algorithm is proposed as a solution to a problem, developers and

researchers must determine whether the algorithm is correct and uses resources

efficiently.

● When programs are put forward as implementations of algorithms, testing

organizations and users may formally as well as empirically verify that the software

behaves according to identified specifications. (Instances of required formal

[P]eople who create new algorithms or designs need some ability to independently apply

mathematical techniques, and at the high-math end of the spectrum, those who conduct

research in an area need a deep ability to work with its mathematics:

Algorithms, is connected to many mathematical topics. The high connectivity of “computing

methodologies” is perhaps more surprising - it is due to the category being a broad one that

contains many subtopics.

International Journal of Research in Medical and Basic Sciences
Volume 5 Issue 9, September 2019 ISSN: 2455-2569 Impact Factor: 4.457
Journal Homepage: http://mbsresearch.com, Email: mbsresearchp@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal

41 International Journal of Research in Medical and Basic Sciences

:http://mbsresearch.com, Email: mbsresearchp@gmail.com

Further comments seem appropriate for the “domain mathematics” topic linked to “applied

computing.” All applied computing is in some domain that has its own mathematical tools or

foundations, and at some level the people involved in any applied computing project have to

understand that mathematics.

In reviewing Figure 1, note that no attempt is made to de- fine the depth of mathematical ability

required to work in each computing category. Different people with dramatically different

degrees of mathematical skill can work in the same category, and the same person may deploy

different skills on different tasks in a category. At the low-math end of the scale, writing code

from classic algorithms or external specifications likely requires only broad familiarity with the

terminology and overall concepts of a mathematical area. Lethbridge’s 1998 survey of the

knowledge re- quired by software engineers [20], supported by Surakka’s smaller survey five

years later [31], suggests that many productive software professionals operate near this level of

mathematical knowledge. However, people who create new algorithms or designs need some

ability to independently apply mathematical techniques, and at the high-math end of the

spectrum, those who conduct research in an area need a deep ability to work with its

mathematics.

Mathematics and Reasoning:

Many activities within computing require practitioners to analyze problems and potential

solutions logically and carefully - often ap- plying tools and techniques from mathematics. For

example, verification do exist - for example electronic gambling devices are subject to

mathematically defined fairness requirements in some jurisdictions [22]; one of the authors

recently saw a position announcement from a gaming company seeking someone to “create, test,

and analyze new games” but also to “compose ... mathematical proofs for game submissions to

... regulators” [27].)

● When several potential solutions are suggested for a problem, practitioners should be

able to analyze the relative advantages and disadvantages of those solutions under

varying assumptions.

Bruce [5] provides several specific examples of mathematical reasoning in these and other

computing activities. The bottom line is that computing professionals need to reason logically -

not just in hypothetical or classroom settings, but in real research and development projects.

 More abstractly, there are close connections between problem solving in computer science

and in mathematics. Devlin [9] observes that computer science is a mass of abstractions built on

other abstractions, and that mathematics is the age-old language and practice of abstraction.

Ralston [24] argues that even if computing professionals seldom use math explicitly, the logical

thinking central to mathematics is also central to computing. In her widely cited “computational

thinking” paper [35], Jeannette Wing develops this idea in depth. She credits computer science

with a distinctively powerful approach to problem solving, which, among other defining

characteristics, “complements and combines mathematical and engineering thinking.” The term

“computational thinking” is broadly defined in her paper, and has since been applied by other

authors to almost any thought process remotely associated with computing. Yet the key point of

her argument and that of others remains: the general reasoning and problem-solving skills

International Journal of Research in Medical and Basic Sciences
Volume 5 Issue 9, September 2019 ISSN: 2455-2569 Impact Factor: 4.457
Journal Homepage: http://mbsresearch.com, Email: mbsresearchp@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal

42 International Journal of Research in Medical and Basic Sciences

:http://mbsresearch.com, Email: mbsresearchp@gmail.com

characteristic of computer science are powerfully effective and closely interwoven with those of

mathematics.

 Altogether, computing researchers and practitioners must be able to reason about problems

and their solutions in both informal and formal ways. This reasoning involves analysis,

synthesis, and evaluation - the three deepest levels of understanding and mastery identified by

Bloom [4]. In many cases, this level of reasoning is an integral part of the creative problem-

solving process that engages computing professionals. Although some software developers may

seldom use math explicitly, there are rich connections between it and computer science that can

enhance this reasoning.

Mathematics’ Role in Computer Science Education:
As seen in the previous section, the relationship between mathematics and computer science has

two faces: many software engineers perform well without relying on mathematics, while at the

same time there are rich connections between the fields that can be exploited by those prepared

to do so. How then does, and should, mathematics fit into undergraduate computer science

curricula?

The Current State of Mathematics in Computer Science Curricula:

As an indication of what strong undergraduate computer science programs around the world

consider appropriate mathematics con- tent, we examined the mathematics requirements of 25 of

the first 26 programs (we were unable to find an English description of one) listed in US News

and World Reports’ best universities in computer science in 2012 [34]. We emphasize that this is

not a statistically rigorous study of what “typical” computer science undergraduates experience,

but rather an effort to get an international selection of high-quality programs that can provide a

general sense of how math is integrated into computer science education. However, the amount

of math in the high-quality programs is consistent with the amount of math required in CAC-

accredited US computer science programs surveyed in the late 1990s [21], and our personal

experiences suggest that observations about the high-quality pro- grams also apply to other

programs.

 Table 1 provides a summary of how many programs require what sorts of math. The table

shows a slight inconsistency between mathematics requirements and the actual connections

between math and computer science from Figure 1. Almost all the programs require students to

study discrete mathematics, which is appropriate as it includes much of the foundational

mathematics for computer science (e.g., logic, some proof methods, set theory, etc.). Three pro-

grams, however, do not require this foundation. Furthermore, prob- ability and statistics is the

least commonly required of the topics we looked for, despite its heavy use in computer science.

Calculus, which has relatively limited uses in computer science, is required almost as often as

discrete mathematics, and more often than prob- ability and statistics. Lethbridge’s survey [20]

noted similar inconsistencies, in particular finding calculus to be one of the most taught but least

important subjects in the software engineers’ repertoire.

Table 1. Mathematics Requirements of 25 High- Quality Computer Science Programs:

International Journal of Research in Medical and Basic Sciences
Volume 5 Issue 9, September 2019 ISSN: 2455-2569 Impact Factor: 4.457
Journal Homepage: http://mbsresearch.com, Email: mbsresearchp@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal

43 International Journal of Research in Medical and Basic Sciences

:http://mbsresearch.com, Email: mbsresearchp@gmail.com

Topic Number of Programs Requiring

Discrete Math 22

Probability and Statistics 15

Calculus 21

The number of mathematics courses required by the programs varies greatly, from a minimum of

1 to a maximum of 8, with a mode of 5. Figure 2 shows the complete distribution. Programs at

the higher end of the distribution often require multiple courses in calculus, linear algebra, and/or

differential equations. Very few programs require more than one course in discrete mathematics

or in probability and statistics. High numbers of required math courses therefore do not indicate

extensive study of the mathematics central to computer science.

Figure 2: Number of mathematics courses in sample computer science programs.

The prominence of calculus in computer science programs is puzzling. Some amount of

calculus can be explained by the fact that one or two calculus courses are a prerequisite for

other mathematics in most schools. However, many programs also require multivariable

calculus, differential equations, etc., far exceeding what is plausibly necessary to study the

mathematics more central to computer science. This amount of calculus may be due to

programs being housed in schools of engineering, or being historically derived from

engineering programs, which traditionally require substantial amounts of calculus.

 More important than the quantity or type of mathematics re- quired in undergraduate

computer science programs is its utilization outside of mathematics courses. Folk wisdom among

computer science educators seem to be that there is little such utilization. This is certainly our

International Journal of Research in Medical and Basic Sciences
Volume 5 Issue 9, September 2019 ISSN: 2455-2569 Impact Factor: 4.457
Journal Homepage: http://mbsresearch.com, Email: mbsresearchp@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal

44 International Journal of Research in Medical and Basic Sciences

:http://mbsresearch.com, Email: mbsresearchp@gmail.com

own sense from reading the computer science education literature and talking to other educators,

participating in program reviews, etc. Further, Cohoon and Knight argue for better integrating

discrete mathematics and software engineering courses by asserting (albeit without citing

evidence) that…The standard discrete mathematics courses provide minimal motivation and

material application. The standard software engineering courses provide little if any application

of discrete mathematics, and the for- mal method courses are usually optional and late in the

education of a Computer Science major. [6] (excluding courses whose main goal is to teach

math), with occasional programs extending as low as ¼ or as high as ¾. There may be some

geographical or cultural variation, with programs in Europe perhaps making more use of

mathematics, and programs in the United States making less. Taken all together, these

observations suggest that the actual use of mathematics in computer science curricula is not as

limited as the folk wisdom implies, al- though it is far less than it could be.

Is There a Problem?

Computer science programs require students to take a reasonable number of mathematics

courses, but much of that mathematics is of limited relevance to computer science as a whole.

The remaining mathematics is, on balance, under-utilized in the computer science to a certain

extent we can

The prominence of calculus in computer science programs is puzzling. Some amount of

calculus can be explained by the fact that one or two calculus courses are a prerequisite

for other mathematics in most schools.

compare this folk wisdom to reality. We have read course descriptions from some of the high-

quality computer science programs discussed above (specifically MIT, Stanford, Oxford, the

Hong Kong University of Science and Technology, and the Ecole Polytechnique Fédéral de

Lausanne), as well as from one of our own institutions (Geneseo), and the model course

descriptions that accompany the 2001 ACM/IEEE computer science curriculum guideline [17]

and its 2008 update [16]. Based on these sources, we observe certain patterns in the utilization of

math in computer science programs. Most strikingly, the courses that visibly use mathematics

concentrate in certain subfields of computer science. Subfields taught with some reference to

mathematics include algorithms and data structures, computer graphics, artificial intelligence,

and CS2-level courses to the extent that they lay the groundwork for later study of algorithms

and data structures. Electrical engineering courses, when included in computer science programs,

are also heavily mathematical. Courses with little evident use of mathematics tend to fall in such

subfields as introductory programming, computer systems (architecture, operating systems,

networking), and software engineering. This pattern reflects some, but not all, of the connections

identified in Figure 1. In particular, the courses that use mathematics lie in the heavily connected

“theory of computation” and “computing methodologies” categories, while the courses that make

little use of mathematics lie elsewhere. However, these non-mathematically- oriented courses

still lie in categories that have mathematical connections (e.g., to probability and statistics or to

logic), and those connections are not evident in course descriptions. Numerically, between and ½

International Journal of Research in Medical and Basic Sciences
Volume 5 Issue 9, September 2019 ISSN: 2455-2569 Impact Factor: 4.457
Journal Homepage: http://mbsresearch.com, Email: mbsresearchp@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal

45 International Journal of Research in Medical and Basic Sciences

:http://mbsresearch.com, Email: mbsresearchp@gmail.com

of the courses in each program seem to use math

curriculum, with large sub-fields of the discipline being taught with little, if any, reference to it.

Such a curriculum produces graduates who are ill-equipped to use mathematics in their

professional careers, and who see little need to do so. At least on the surface, this is not a

problem—those graduates do, after all, get and keep jobs in computing. However, at a deeper

level, inability to apply mathematics to computing constrains graduates’ long-term potential.

 Within a learning environment, understanding typically starts at the beginning levels of

Bloom’s taxonomy—knowledge of specifics (e.g., jargon, truth tables, formal rules of logic),

comprehension (e.g., paraphrasing formal rules), and simple applications. Computer science,

whether in its mathematical aspects or not, is no exception. Such foundational work is needed as

a base for reasoning about algorithms, programs, systems, etc. However, this elementary level

of reasoning and understanding is insufficient for actually using computer science in the real

world. Students must learn much more than the mechanical application of routine steps. Such

learning happens when later courses build upon the foundation laid by introductory ones and

provide practice at deeper levels of analysis in both structured and open-ended settings.

Although such analysis may not be part of every discussion of every topic in upper-level

courses, students need to experience it repeatedly and in multiple contexts. When undergraduate

computer science pro- grams fail to do this with the mathematics they require, they limit

graduates’ ability to use mathematics in either subsequent study or employment.

 In the workplace, mathematics and mathematical methods are increasingly important in

software development. For example, the IEEE Computer Society’s Certified Software

Development As sociate/Professional (CSDA/CSDP) examinations [15] include mathematics

roughly equivalent to that in the 2001 ACM/IEEE computer science curriculum

recommendations [17], plus additional probability and statistics. Formal methods are slowly

gaining traction in the software industry; of particular note, programming for concurrency is

sweeping through the industry, and automatic model checking is an increasingly vital tool for

coping with the subtle timing and synchronization bugs that concurrency brings [18, 8]. While

there is ample need for programmers who can write code to given specifications, the more

senior developers who pro- duce those specifications often need facility with the mathematics of

the application domain [30]. Undergraduates who continue to graduate school, particularly at

the doctoral level, will find them- selves in a world of mathematical sophistication

unimaginable from the undergraduate perspective - the most pronounced ex- ample is probably

the study of programming language theory as a non-mathematical descriptive activity in

undergraduate texts such as [26], but as an entirely mathematical exercise in modeling language

semantics in such graduate texts as [33].

Are There Solutions?

A number of measures can be (and sometimes have been) tried in order to close the gap between

the role mathematics plays in computer science and the way that role is conveyed in

undergraduate computer science education. None of these measures, however, shows clear

promise of success. For example…

Computer science educators can be alerted to the problem: Three decades ago Ralston

International Journal of Research in Medical and Basic Sciences
Volume 5 Issue 9, September 2019 ISSN: 2455-2569 Impact Factor: 4.457
Journal Homepage: http://mbsresearch.com, Email: mbsresearchp@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal

46 International Journal of Research in Medical and Basic Sciences

:http://mbsresearch.com, Email: mbsresearchp@gmail.com

argued that undergraduate computer science programs need mathematics support, and provided a

detailed list of mathematics topics [23]; a decade and a half ago Lethbridge called attention to the

amount of inappropriate math covered in computer science curricula [20]; at approximately the

same time an informal working group organized itself online to advocate for the importance of

math in computer science education [2]; a few years later Tucker argued that computer science

curricula were “math- phobic” [32]. Although there have been some changes in mathematics’

treatment in computer science curricula over this time, notably the incorporation of discrete

structures into the ACM/IEEE CS curriculum recommendations in 2001 [17], most of the above

authors’ criticisms are still valid today. Raising awareness of the problem does not solve it.

Mathematics requirements can be used more efficiently: Computer science curricula

generally have room for a number of mathematics courses, but few of those courses actually

teach mathematics that is central to computer science. However, this inefficiency is difficult to

correct. Prerequisite structures in departments of mathematics may require computer science

students to take some amount of foundational, but not directly applicable, math, and computing

programs in schools of engineering may be under explicit or implicit pressure to include

mathematics that is traditional for the physical sciences even if not crucial to computer science.

Mathematics can be integrated into computer science courses and vice versa: Under-

utilization of mathematics in the computer science curriculum is the largest problem, and there

have been many attempts to address it. In the 1980s through 1990s Henderson evolved a first

course for computer science majors that emphasized mathematical methods of reasoning and

problem solving as the foundation for studying computer science [12, 13]. During the early

1990s there were other efforts to integrate discrete math concepts early in the computer science

curriculum, notably the two textbooks Foundations of Computer Science [1] and A Logical

Approach to Discrete Math [11]. In the later 1990s and early 2000s Baldwin and Scragg

developed a course that introduced much of the discrete math needed by computer scientists in

the context of elementary design and analysis

of algorithms [3]; Cohoon and Knight independently developed a similar set of courses for

software engineers [6]. Currently, Sitaraman and his colleagues are promoting a software

engineering course that emphasizes mathematical techniques for deriving correct programs [29].

None of these efforts, however, has gained traction beyond their developers. The computer

science community has regarded them as interesting, and perhaps even praise-worthy, but not as

paradigm-changers that must be adopted.

Conclusion:

Computer science, like the physical sciences and traditional engineering fields, widely uses

mathematics to model the phenomena it studies. Furthermore, computational and mathematical

reasoning are closely connected. Yet, paradoxically, many computers science and software

engineering graduates function quite well as professionals without consciously applying

mathematics to their work. This paradox leads mathematics to sit uncomfortably in under-

graduate computer science curricula: while most such curricula include appropriate

mathematics, they often also include much mathematics that is not strongly connected to

computing, and while they teach some applications of math to computing, they often overlook

International Journal of Research in Medical and Basic Sciences
Volume 5 Issue 9, September 2019 ISSN: 2455-2569 Impact Factor: 4.457
Journal Homepage: http://mbsresearch.com, Email: mbsresearchp@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal

47 International Journal of Research in Medical and Basic Sciences

:http://mbsresearch.com, Email: mbsresearchp@gmail.com

others. This awkward treatment of mathematics in computer science education has been

surprisingly resistant to correction, for a surprisingly long time. While the precise reasons differ

from institution to institution, we believe that the overarching one is that computer science

faculty simply do not see the problem as urgent. And indeed, as long as computer science

graduates find jobs or places in graduate schools in the field, and the field itself is growing, the

problem does seem minor.

However, taking a longer view, there is reason for concern. Software development and testing

are slowly adopting mathematical tools and methods, and today’s graduates will need to adapt to

those tools and methods throughout their careers. As graduates advance through their careers,

they will come into positions where they have responsibility for system design, assessment of

test results or quality metrics, selection of architectures or algorithms, and similar activities that

require quantitative evaluation of data and comparison of option addition, computer science is a

young discipline whose definition is still in flux. It is arguably the one science that studies

artificial rather than natural phenomena. The distinction between computer science and software

engineering are not nearly as clear as the distinction between other sciences and their related

engineering fields; indeed, some would probably question whether there is a distinction at all.

The role of mathematics in computer science and computer science education is therefore tied to

larger questions of where the “science” in computer science lies and what the scientific basis for

software engineering is or should be. The designers and implementers of computer science

curricula today will play a large role in framing these questions for future generations and

establishing the groundwork for answering them.

The time has come for all of us, as computer science and soft- ware engineering educators, to

reform the role of mathematics in our curricula. The authors recommend incremental reform,

since past experience suggests that a sudden and universal leap in enthusiasm for mathematics in

computing education is unlikely. However, individual programs can make important

improvements by pruning from their requirements one or two math courses with limited ap-

plications to computer science, and replacing them with ones with more relevance, or with

electives that allow students to explore connections they find pertinent. Programs, or even single

instructors, can ensure that more computer science courses use mathematics to illuminate the

computing material they present, even without creating new courses or changing the choices of

topics studied. Individually these are small, local, and therefore relatively easy, changes;

collectively, pursuing both until they gain momentum would eliminate two major reasons why

our graduates lack the inclination and ability to make math part of their professional toolkit. Ir

References:

[1] Aho, A. V. and Ullman, J. D. Foundations of Computer Science. (New York: Computer

Science Press, 1992).

[2] Baldwin, D. and Henderson, P. B. “A working group on integrating mathematical reasoning

into computer science curricula.” http://www.math-in-cs.org/. Accessed 2013 April 30.

[3] Baldwin, D. and Scragg, G. Algorithms and Data Structures: The Science of Computing.

http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/
http://www.math-in-cs.org/

International Journal of Research in Medical and Basic Sciences
Volume 5 Issue 9, September 2019 ISSN: 2455-2569 Impact Factor: 4.457
Journal Homepage: http://mbsresearch.com, Email: mbsresearchp@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal

48 International Journal of Research in Medical and Basic Sciences

:http://mbsresearch.com, Email: mbsresearchp@gmail.com

(Hingham, Massachusetts: Charles River Media, 2004). Computer and

[4] Bloom, B. Taxonomy of Educational Objectives: Handbook 1: Cognitive Domain.

(Longmans, Green and Company, 1956): 201-207.

[5] Bruce, K. et al. “Why math?” Communications of the ACM, 46, 9 (2003): 41- 44.

[6] Cohoon, J. P. and Knight, J. C. “Connecting discrete mathematics and software engineering”

in Proceedings of the Thirty-Sixth ASEE/IEEE Frontiers in Education Conference. (New

York: IEEE, 2006): M2F-13 - M2F-18.

[7] Cormen, T. et al. Introduction to Algorithms. 3rd ed. (Cambridge, Massachusetts: MIT

Press, 2009).

[8] Desnoyers, M. “Proving the correctness of nonblocking data structures.” Communications of

the ACM, 56, 7 (2013): 62-69.

[9] Devlin, K. “Why universities require computer science students to take math.”

Communications of the ACM, 46, 9 (2003): 37-39.

[10] Foley, J. et al. Computer Graphics: Principles and Practice. 2nd ed. (Reading,

Massachusetts: Addison-Wesley, 1990)

[11] Gries, D. and Schneider, F. B. A Logical Approach to Discrete Math, (New York: Springer

Verlag, 1993)

[12] Henderson, P. B. “Discrete mathematics as a precursor to programming.” In

Proceedings of the Twenty-First SIGCSE Technical Symposium on Computer Science

Education. (New York:
[13] Henderson, P. B. “The role of mathematics in computer science and software engineering

education.” Advances in Computers, 65 (2005): 350-396.
[14] Hennessy, J. and Patterson, D. Computer Architecture: A Quantitative Approach

(Amsterdam: Morgan Kaufmann Publishers, 2003).
[15] IEEE Computer Society, “TechLeader OnCourse.”

http://www.computer.org/portal/web/certifi-
cation. Accessed 2013 April 30.
[16] IEEE Computer Society and Association for Computing Machinery Interim Review Task

Force. “Computer Science Curriculum 2008: An Interim Revision of CS 2001.”
http://www.acm.org/ education/curricula/ComputerScience2008.pdf. Accessed 2013 June
27.

[17] IEEE Computer Society and Association for Computing Machinery Joint Task Force on
Computing Curricula. “Computing Curricula 2001: Computer Science,”
http://www.acm.org/ education/education/education/curric_vols/cc2001.pdf. Accessed
2013 April 30.

[18] Jhala, R. and Majumdar, R. “Software model checking.” ACM Computing Surveys 41, 4
(2009). doi: 10.1145/1592434.1592438.

[19] Kedem, Z. et al. eds. “The 2012 ACM Computing Classification System.” http://www.acm.
org/about/class/2012. Accessed 2013 April 20.

[20] Lethbridge, T. “Priorities for the education and training of software engineers.” Journal of
Systems and Software, (2000): 53-71.

[21] McCauley, R. and Manaris, B. “Computer science education at the start of the 21st
century—a survey of accredited programs.” in Proceedings of the Thirty-Second
ASEE/IEEE Frontiers in Education Conference. (New York: IEEE, 2002): F2G-10 - F2G-
15.

http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.computer.org/portal/web/certifi-
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/
http://www.acm.org/

International Journal of Research in Medical and Basic Sciences
Volume 5 Issue 9, September 2019 ISSN: 2455-2569 Impact Factor: 4.457
Journal Homepage: http://mbsresearch.com, Email: mbsresearchp@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal

49 International Journal of Research in Medical and Basic Sciences

:http://mbsresearch.com, Email: mbsresearchp@gmail.com

[22] Nevada State Gaming Control Board Gaming Commission. “Regulation 14.” http://gaming.
nv.gov/modules/showdocument.aspx?documentid=2921. Accessed 2013 July 17.

[23] Ralston, A. “The first course in computer science needs a mathematics corequisite.”
Communications of the ACM, 27, 10 (1984): 1002-1005.
[24] Ralston, A. “Do we need ANY mathematics in computer science curricula?” inroads—the

SIGCSE Bulletin, 37, 2 (2005): 6-9.
[25] Sahami, M. “A course on probability theory for computer scientists.” in Proceedings of

SIGCSE 2011, the Forty-Second Technical Symposium on Computer Science Education
(New York: ACM, 2011): 263-268

[26] Sebesta, R. Concepts of Programming Languages. 9th ed. (Boston: Addison-Wesley,
2010).

[27] SHFL Entertainment. “Game Designer / Mathematician.” http://www.creativeheads.net/
job/12078/game-designer--mathematician-in-las-vegas. Accessed 2013 July 17.

[28] Sipser, M. Introduction to the Theory of Computation. 3rd ed. (Boston: Cengage Learning,
2013).

[29] Sitaraman, M. et.al. “Building a push-button RESOLVE verifier: progress and challenges.”
Formal Aspects of Computing, 23, 5 (2011): 607-626.
[30] Stringer, M. Personal communication to Douglas Baldwin. Sept. 2012.
[31] Surakka, S. “What subjects and skills are important for software developers?” Communica-

tions of the ACM, 50, 1 (2007): 73-78.
[32] Tucker, A., Kelemen, C., and Bruce, K. “Our curriculum has become math-phobic!” in

Pro- ceedings of the Thirty-Second SIGCSE Technical Symposium on Computer Science
Education. (New York: ACM, 2001): 243-247.

[33] Turbak, F. and Gifford, D. Design Concepts in Programming Languages. (Cambridge,
Mas- sachusetts: MIT Press, 2008).

[34] US News and World Report. “World’s Best Universities: Computer Science.” http://www.
usnews.com/education/worlds-best-universities-rankings/best-universities-computer-
science. Accessed 2013 April 28.

[35] Wing, J. “Computational Thinking.” Communications of the ACM, 49, 3 (2006): 33-35.

http://gaming/
http://gaming/
http://gaming/
http://gaming/
http://gaming/
http://gaming/
http://www.creativeheads.net/
http://www.creativeheads.net/
http://www.creativeheads.net/
http://www.creativeheads.net/
http://www.creativeheads.net/
http://www.creativeheads.net/
http://www.creativeheads.net/
http://www.creativeheads.net/
http://www.creativeheads.net/
http://www.creativeheads.net/
http://www.creativeheads.net/
http://www.creativeheads.net/
http://www/
http://www/
http://www/
http://www/
http://www/
http://www/

