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ABSTRACT
This paperobtained functional forms of determining matrices for certain pertinent parameter
ranges, thus bridging the knowledge gap in this area of acute research need. The proofs were
achieved by the exploitation of key facts about permutations, combinations of summation

notations, change of variables techniques and the compositions of sigma and max functions.
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1. INTRODUCTION

The theory of dynamical systems is motivated by a desire to exceed the simple stage
of computing particular solutions of models to establishing various structural relations among
certain parameters and their influence on the solutions. The importance of the structural
exploration derives from the fact that it serves as a clue into the system behaviour. This
enables one to roughly outline the solution of a complex system, which is a spring board for
creatively refining the original model.

Secondly, one can circumvent the arduous task of explicitly examining numerous
particular solutions by leveraging on structural exploration. For example, the stability of

complex economic processes of fuel price adjustments can often be inferred from their
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structural forms. Controllability is a very important concept that is applied in aerospace
engineering, optimal control theory, systems theory, quantum systems, power systems,
industrial and chemical process controls etc. This concept was first introduced by Kalman in
1963 (Zmood, 1971) and a survey of controllability of dynamical systems was done by
Klamka (2013). In addition, there have been intense research activities on qualitative
approach to controllability of linear and nonlinear systems. Xianlong (2013) researched on
approximate controllability of semi linear neutral retarded systems and Jackreece (2014)
worked on the controllability of neutral integro-differential equations.

There has been a flurry of research activities by Control Theorist and Applied
Mathematicians on the subject of controllability of functional differential control systems in
recent years (Xue & Yong, 2016). However, one is not aware of any other results that
comprehensively interrogated the controllability of linear autonomous control systems of
single-delay neutral and double-delay types via the structures of the determining matrices
except (Ukwu, 2014b; 2016).

Furthermore, in the study of Euclidean controllability of linear autonomous control
systems, determining matrices are preferred veritable tools as they are the least
computationally intensive when compared to indices of control systems matrices or
controllability Grammians. The determining matrices have computational advantage over
indices of control systems or controllability Grammians due to the fact that they offer
considerable savings in computational time when deployed in the investigating of the
Euclidean controllability of systems.

Unfortunately there is no known published work that has attempted the extension of
the great feats of (Ukwu, 2014b; 2016) to delay control systems with triple time-delays in the
state variables until (Ukwu & Temuru, 2018). This could be attributed to the severe difficulty
in identifying recognizable mathematical patterns needed for any conjecture on functional
forms of determining matrices and subsequent inductive proof. It is against this backdrop that
this article makes a positive contribution to knowledge by correctly establishing relevant
results on functional forms of determining matrices with respect to the afore-mentioned

triple-delay systems for certain pertinent parameters.

2. THEORETICAL UNDERPINNING
2.1 Identification of Work-Based Triple-delay Linear Autonomous Control Systems

Consider the triple-delay linear autonomous control system:
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X(t)= Ax(t)+Ax(t—h)+Ax(t—2h)+Ax(t—3h)+Bu(t);t >0 (1)
X(t) =g¢(t),t[-3n,0],h>0 (2)
where A, A,A,and Ajare nxn constant matrices with real entries, B is an nxm

constants matrix with real entries. The initial function 4 is inC([-3h,0],R"), the space of

continuous functions from [—3h,0] into the real N-dimensional Euclidean space, R"with

norm defined by H¢H=5Upt€[,3h,0] {‘(/5('[)‘} (the sup norm). The controlUis in the space

L. ([0.t,],R"), the space of essentially bounded measureable functions taking [0,t,] into R"

u(v)]-

Any controlue L, ([O,tl], R”) , will be referred to as an admissible control.

with norm|g| =esssup, .,

See Chidume (2007) for further discussion on L,(orL"), pe {1, 2, --,oo}.

(Ukwu &Temuru, 2018)obtained the following preliminary and major results on the functional
form of the determining matrices of the system (1) for some parameters, as well as on the

j- interval [3k —3,00).

Their results are as follows:

Let r,r,r, be nonnegative integers and let P ()b (e Ye(re) denote the
als b/ [

set of all permutations of

a,a,...,ab,b,...,b c,c,...,cCthe permutations of the objects a, b, ¢, in which i appearsr, times, i< {a,b, c}.

r, times I, times r. times

2.1.1 Determining Equations: Uniqueness and Existence

Let Q. (S) be an nx n matrix function defined by

Q (s)=AQc.(s)+AQ.(s—h)+AQ(s—2h)+AQ., (s—3h)for k=12.3,...s>0,

with intial conditions :
Q(0)=1,;Q,(5)=0;50.

These initial conditions guarantee the unique solvability of the matrix function Q, (S)
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2.2Preliminary Lemma on Determining matricesQ, (s),s € R (Ukwu & Temuru, 2018)
i)  Q(s)=0if s<0

(i Q(0)=A

(i) Q.(s)=0 if s=rh for anyinteger r

(iv)  Q.(h)= > II/& k>1

(V- v e Po(ka), 1) =

(V) Q(jh)=A,sgn(max{4-j,0})

3. RESULTS AND INTERPRETATION
Main Result from (Ukwu & Temuru, 2018).

3.1  Theorem on the Functional Form of Qk( jh), for j>23k-3,k>1

0 if j>3k+1 (i)
Al if j=3k (i)
k-1

Q(1h)= > [IA - Saaac if j=3k-1 (i)

(% )ep, .3 (k1 =1 r=0

Kk Kk
2 [TA+ > JIA if j=3k-2 (iv)
(v ) € P 1 (3k-1-j),3 (j+1-2k) i=1 (V1-~~ka)€p2(3k,j)13“,2“ i=1

k Kk Kk

Mas > TIa+ ¥ JlA =%

(vi--v )e p P1@) 2) 3(k2) 1=L (VoraVi Epo(1) 3k 171 (W..v)ep, (3).3(k3 171

Note:For j =3k —3, (V) can be also be expressed as:

I’+l K

I D S 1

=01 O(Vl“Vk)Epo(ro).l(rl),Z(EBrO—Zrl)‘a‘(k—3+2r0+r1] =

The formulation and proof of the expressions for the determining matrices of the system of
interest were achieved by the exploitation of key facts on permutations of objects, the
interrogation of the feasibility dispositions of the determining matrices,the application of the

principle of mathematical induction and the greatest integer function.

This article is a sequel to Ukwu and Temuru (2018) with further results and illumination on

the subject of interest. Consider the system (1) and (2), with their standing hypotheses. Then
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3.2  Theoremon Qk(jh); 1<k<j

Q. (ih)
%] HIES! k
S A-A+Y Y > [1A 1<k i<50
r=0 (v )e P o (1) a(2k-i-2r) 2(r+iK) =l =0 (v, ""Vk)€p3(r3),o(r0) 1{ry) (ko) i=1
%]
= > A, -A,0<j<2 (ii)
=0 (W)€ o1k i 2(eik)
0, j>3k+1k>1 (iii)

where 1, =max{0,3k —2j+3(r,—1,)} and [[.]] denotes the greatest integer function.

3.3 Verification of Theorem 3.2

The mathematical convention of discarding infeasible components or equating them to zero,
as applicable, is preserved here.

(ii) and (iii) follow respectively from the fact that

il _ 3k — ] _
—|{=0for0< j<2and || —— | [<O,for j >3k +1
3_ 3

2]

(i) k=lje{l,2}=> Eﬂ:o:q(jh): ZO - > A, =Q(h)=A.Q(2h)=A,
&

k=1je{34,-}=Q(jh)=> > > A, = Q. (3h)=A;,Q(jh)=0,vj>4.

r3:1 rO:O vlep(i(r;,),o(ro) 1(r 1),2(1404143]

These are consistent with Theorem 4.1 of (Ukwu & Temuru, 2018)

0(r),1(2-j-2r),2 (r+j-1)

k=2,j=2=Q,(2h :le > A A, = A’ +AA, + A A, consistent with

r=0 (WV2) € P o (1) 1002r) 2(r)

(Ukwu, 2014a) and direct evaluation from the determining equation.

k=2,j=3=r=0,=1r,e{01};r,=0=>r=3=>k- —1, =-2 < 0= infeasibility = r, # 0
=>fo:1=>f1=0:>Qz(3h):( | > Awfvﬁ( | Z H"\i =AA+AA+AA+AA
V2) € P g (0) 1) 20) ViV2)€Ps( 00, 2(0) 171

This agrees with (v), theorem 4.2 of Ukwu and Temuru (2018).
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k=2,j=4=r=0,1,=1,1,=0,1,=1r,=0=Q, (4h)= A7+ AA, + A/A, in agreement
with (iv), theorem 4.2 of Ukwu and Temuru (2018).

k=2,j=5=r isinfeasible, r,=1,1,=0, r, =0,r, =1= Q, (5h) = A/A, + A/A,, in agreement
with (jii), theorem 4.2 of Ukwu and Temuru (2018).
j=k=3=>re{01},1r,=1r,€{012};r,=0=r,=6=r,=—4 <0, resulting in summation
infeasibility. r,=1=1r, = max{0,9— 6} =3=1, <0, implying summation infeasiblity.

L,=2=1= max{0,9-6-3}=0=r,=3-2-0-1=0, impling that
Q,(30) =AAA + AAA + AAA+AAA +AAA + AN +AAA + AAA+AAA + AN

This is consistent with the result from the determining equation:
Q3 (Bh) = Asz (Bh)"' Ain (Zh)"' AzQz (h)"' %Qz (0)
= Ay (AP AA + AA +AN)+A(AA + A+ AA)+A (AA+AA)+AA

K 23’ J :4!:>r€{0,1}1r0 6{071}’ r3 :1, ro :0:>r1 =4:>I’2 < 0, rO :1:>ri :1,

Q:(4h)=AAA + AN + AAA +AAA +AAA +AAA +AAA +AAA
AN+ AAA+AAA+AAA
this is consistent with the result from the determining equation:
Q;(4h) = AQ, (4h)+ AQ, (3h)+ AQ, (2h)+ AQ, (h)
= A (AA AT +AA A (AA+AA +AA+AA)
A (AA A TAA) A (AA+AA)
j=5k=3=r=0r,=1r,e{0l};r,=0=r=2=r1,=0
= Qy(5h) = AAA + AAA +AAA + AN + AAA + AAA + AAA + AAA
+AAA +AMA + AR +AAA,.
This tallies with the following result from the determining equation:
Q. (5h) = AQ, (h)+ AQ, (4h) + AQ, (3h) + AQ,2(h)
= A (AA+AA)+A(AA+ATHAA A (AA AR +AA+AA)
+A(AA+A AR
ji=4k=4=re{012},r,€{012} r,=1;1,=0=r,=7= the corresponding sum is infeasible
I,=1=r=4=r,<0= the corresponding sum is infeasible.
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r,=2=r,=1=r1,= 0. The feasible values: r ¢ {0,1,2},(r0,r1,r2,r3) =(2,1,0,1) yield

Q,(4h)= AAAA + AAN + AAAA +AAAA+AAAA +AAAA + AAAA,

TAAAA + AAN + ANA +AAAA+AAAA+ANA+AAAA +AAAA

TAAAA +AAAA, + AN + AAAA + AAAA + AAAA + AAN+AAA,

TAAN + AAAA+AAAA+ANA+ANA +ANA+AAAA+AAA.

This coincides with the result from the determining equation:

Q, (4h) =AQ, (4h)+ AQ, (3h)+ AQ, (2h)+ AQ, (h)
:%{%A%+%¥+%%A+A%%+AA%+A%A+A%%+%%%]

AN+ AA AN +AAA,

+ A (AA+AAA +AAA+AAA+AAA + A +AAA+AAA+AAA+AN)
A (AA+ AN + AAA+AAA+AA+AR)+A(AA+AAA+AN)

j=5k=4=re{01},r,€{012}r,=1;r,=0=r,=5= the sumis infeasible.

h=l=r=2=r=0r=2=r=0=>r1,=1
The feasible values: r € {0,1}; (ry.r,.1,.15) €{(1,2,0,1),(2,0L1)} yield

Q,(5h) = AAAA + AAAA + ANA + AAA + AAAA + AAAA + AAAA,
+AAAA + ANA +AAAA+AAAA + AAA +AAAA +AAAA + AAA
+AAAA + AAAA + ANA + AAAA + AAAA + AAAA + AAA +AAA
+AAAA + AAAAFAAA + AAAA + AAAA +AAAA +AAAA + AN
+AAAA +AAAA+ANAA +AAN+ANA +AAN +AAAA +AAAA
+ANA +AAA,

coinciding with the result from the determining equation:

Q, (5h) = AQ; (5h)+ AQ; (4h)+ AQ; (3h)+ AQ,(2h)
:%{%&%+%%%+¥%+A¥+A%A+A%ﬂ+%%%+%ﬂ%+¥AJ
+AAA +AAA + AN +AAA,
N (%A%+%¥+%%ﬂ+ﬁ%%+¥%+A%ﬂ+ﬂ%%+%%%+%¥]
A A+ AAA +AAA
+A (A + AAA + AAA +AAA+AAA+ K+ AAA+AAA+AAA+AA)
+ A (AA + AN +AAA+AAA+AA+AA)
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j=5k=5=re{012},1,€{01,23},1r,=1L1,=0=r,=8= the corresponding sum is infeasible
r,=1=r,=max{0,15-10+0} =5>5-1= the sum s infeasible.

Lh=2=L=2=1,=5-2-2-1=0,1,=3=1=0=r,=1.,
The feasible values: r €{0,1,2,3}; (r,.1,.1,.1;)€{(2,2,0,1),(3,011)} vield

Q; (5h) = AAAA + ANAA + AANA + AAAA + AAAAA +AAAAA
+AAAAA + AAAA + AAAAA + ARAAA + AAAN + AAAAA
+AAAAA + AAAA + AAAAA + ANAA +ANA + ANAA + ANAA
+AAAAA + AAAKN + AAAA + AAAAA + AAAAA + AANA + AAAAA,
+AAAAA+AAAAA +AAAAA +AAN + ANLAAA + ALAA +AAAA,
+AAAN + AANA + AAAN + AAAAA + AAAAA + AANA + AAAN

AN AA+ AN+ ANAA+ANAAA+ARNA +ANAAA +AAAAA
FAMAAR + ANAN +ANA A+ AAAAA + AAAAA +AANA,
+AAAAA + AAAAA + AAAAA+ AN AP+ AN+ ANA A+ AAAAA
+AAAAN+ AAAA +AAN P+ AMAN +AAMAA+AAAAA +AANA,
AN A+ AAAA + AAAAA + AAAN
AAA+ AN AP + AN AN + A ATAA + A A AAA, + AN + A AAPAA,
+A A AAA +ANAAA + AAAK + AANA + AANA +ANAAA,
AN A+ AR A+AAMK + AAA + AANAA+AAAN +AAN
AN+ AR+ AR AN + ARAAA + AN A+ AAAA+AANA
+AANAA+ AN A+ AAA.
This is consistent with the result of the determining equation:
Q (5h) = AQ, (5h)+AQ, (4h)+ AQ, (3h)+ AQ, (2h)
AAA +AAA +ANA +AAN + AAAA +AAAA +AAAA,
FANA+AAAA+AAAA+AAN +AAAA+AAAA +AAN
+AAAA T AAA+AA +NAA+ AN +AAAA + AAN
+ANA + AAAA +AAAA +ANA +AAAA +AAAA +AAAA
FAAAA AN AAAA+ AAA+ANAA+AAN+ANA +AAN
+AAAA +AAAA+ANA +AAN
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AAA+ AR+ AAA+AAAA +ANA + AAAA + AAAA +AAAA,
AAN + AAA + ANAN+AAAA +ANA + AAAA + AAAA
FAAAA + AR+ A+ AAA + AAAA + AAAA + AAN +ANA,
FAAN +AAAAN - AAAA T ANA + AN+ ANRA +AAAA +AAA
AA+AAA + KAA+ AN+ AAAA + AR + AAAA + AAAA
A | TAAAA + AAN AN+ AAN +AAAA + AAA + KA +AAA
AAA+AAAA +AAN + AN

AfAﬁA)ZAf+A§A2A)+%A%A+%AZ%+'%AZA§+AA€A1+AAAA}
AN AN

34  Theoremon Q (jh);1<j<k<5

+A;

For 1< j <Kk; j,k integers

[ %ﬂ Upper (j k) [ %ﬂ k
2 AcA+ D 2 [1A,

vy ) e P o (rekei)a(i-2r) 2(r) p=lower(j k) =1 (v--v)ep

Qk ( Jh) = 0(r0).3(rg) 0(r, 2 ()

r=0 (v-V)ep 0 (r+k-j).1(j-2r) ,2(r)

k—1,if j=3

where Iower(J’k):{2+sgn(max{0,k—j}), P24

Upper ( j.k) =k —1-sgn(max {0, j —3})

[, = max{k— j—1+3r, 1, —sgn (max {0, —3})+359n[ma><{0,ro —Z—H(STJ-H}J}SQ”(U -3))

r=k=(r+n+r).

35 Proofof Theorem 3.4

1<k <2=0< j<2, hencethe upper limit for r5 is zero, which is less than the lower

limit, implying infeasibility of the second summation component.

Therefore,
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Qk(jh)= Z A, A,

r=0 (v )e P o (rekoi) a(i-2r) .2(r)

The resulting Q, (jh)'s are free of A,.
Thus, we need only prove the formula for3<k <5.

k =3; j =3=>r, =1, Yielding lower (3,3) =2and Upper(33) =2 =1, =2and 1, =0.

1

Q@)=Y ¥ AAA+ X [IA

r=0 (v v, ¥3) € p | (1)a@-2r) 2() (v, v3)ep, (2).5(0).20)10)
= A+ AAA+AAA, + AAA + AAA +AAA + ANA + A+ AAA + AN,
as required.
k=4;j=3=re{01}, r; =1, =0,lower(3,4)=Upper(3,4)=3,r, =3,r, =0.

Therefore,
4

Q@E)=Y, ¥ A-A+ T A

r=0(vy-y ) e pO(r+1),l(3—2r] 20 (Vo Vg 'V4)EP0(3),3(1) i=1

= AN+ AAN + A AA+ AN + AR+ A+ AAAA +AALAA

+ AAAA +AAAA+ANA+ AN+ ANAA+ANA+ AN +AAAA

+AA+AAA AN AN
This is in agreement with the following direct computation from the determining equation:
Q,(3h) = AQ,(3h)+ AQ; (2h)+ AQ, (h) + AQ, (0)

= A (AAA + AAA+AAA + K+ AAA +AAA+AAA+ AN+ AAA+AA)

A (AN AMA A AR+ AAA+AA)+A (AN +AAA+AA )+ AA

k=5; J=3=r{01},r; =1, yielding:
lower (3,5)=4 and Upper(3,5)=4 =1, =4,and 1, =0, =0.= 1, =4,and [, =0 =1, =0,

Therefore

1 5
Q5(3h): Z Z A’l'“A’k+ Z A’i
r=0 (vl N V3V, ,v5) ep (vl Vo Vg Ny ,v5)eP i=1

0(4).30)

0(r+2),1(3-2r) ,2(r)
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This coincides with the following result from the determining equation:
Q,(3h) = AQ, (3h)+ AQ, (2h) + AQ, (h)+ AQ, (0)
A+ AAA + AN+ AAA +AAAA + AN+ AAAA +AAAA
= A | +AAAA +AAN +ANA + AN + AAAA +ANAA+ A +AAN
TANA+AAAA T AAN + AN
[AfAz AR AN L AAAA+ANA AN +AA)2A1+AA)AA]
+AA AN
A (KA AAA AN+ AN )+ AN

k=4; j=4=>re{01,2},r,=1, yielding |ower(4,4) =2and Upper(4,4) =2=10n= 2,

r, = max {4—4—1+3—2—1+ 3sgn {max {O,Z—Z—H%ﬂ}]} =max{-1,0}=0=r,=1,

:>Q4 4h z Z A\/l"'Alk_'_ Z HA’i’

0 (s Va) € P o )14 21) ) (%2 ¥ 44) <Py 1) 1
in consistency with Q, (4h),for1<k < j<5
k =5; j =4=>r, =1, Yielding lower(4,5)=3and Upper(4,5)=3=1r, =3, =1, =0,
2 5
=QMn)=12 > AcA+ > T]A
r=0 (Vv )ehy (r+1),1(4-2r) ,2(r) (V1V2 V3 Vg V5 ) e P0(3)’1(1)3(1) i=1

k =5; j =5=>r, =1, Yielding lower(5,5) =2 and upper(5,5)=3

and upper (5,5) =5—1-sgn(max{0,5-3})=3=1, €{2,3}.

5-5-1+3-2— sgn(max {0,5-3})
r,=2=1r,=max =max{—-1+3(0),0{=0=r,=2
° ? +3sgn(max{0,2—2 }O { ( ) } ’
5-5-1+3-3— sgn(max {0,5-3})
r,=3=r, =max =max{-2+3(1),0{=1=r,=0
° ? +35gn{max{0,3—2 J 0 { ( ) } '

i > A, A, + > f[m

f (V12 V3.V V5 )€ P, e i=1
: : ) 1(2)3(1)
=Q, (5h) = i
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This agrees with Q;(5h), for 1<k < j <5, completing the proof of the theorem.

Theorems (3.2) and (3.4) can be robustly unified as follows:
3.6  Corollary to Theorems (3.2) and (3.4)

For j, ke{01,23,45},j+k=0,

Q(ih)

- T sgn(max {0, j +1-k})
A,

k
(Y Va0V )EP i=1
3(r3).0(ro) 2(ry) 2(k-ro-n-r )

H%ﬂ Upper (j k) Héﬂ K _
+ > A-A+F DD > [TA, |san(max{0.k— j})

F=0 (4 %) € Po i agan 20 foslower(JK) =1 () Py o st ofryafe)

k-1,if j=3

where Iower(J’k):{2+sgn(max{0,k—j}), P24

Upper ( j.k) =k —1-sgn(max {0, j —3})

k—j-1+3r,—r, —Sgn(max{o’j—3})+339”£max{o’r° _Z_H%jﬂﬂ

o o257

where T, =max{0,3k - 2j +3(r -1, )}in the second summation and . =k —(I, + 1, +1, ) in the fourth.

son (/-3

Remark

Replacing sgn(max{0, j +1-k}) by sgn(max{0,j —k}) and sgn (max {0,k — j}) by
sgn(max {0,k + 1~ j}) yields an equivalent functional form of Q_( jh).
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3.7 Implications of Corollary 3.6
Corollary 3.6 immediately gives rise to the following controllability matrix and rank
condition for the investigation of the Euclidean controllability of the initial function problem

IFP (systems 1 and 2) on the interval [O, OO), provided n < 6.

The system (1) with (2) is Euclidean controllable on [0, t, | if and only if

rank Qn (tl) =n,

where

e s (mfo o )
e e o R )

where [[[.]]]denotes the least integer function.

Therefore corollary 3.6 is a necessary and sufficient tool for the determination of the

Euclidean controllability or otherwise of the IFP (systems 1 and 2).

4. SUMMARY AND CONCLUSION

This article obtained the structure of determining matrices Q, (s),of a class of triple-

delay linear control systems, for max{kh,s} < 5h.The obtained results can be deployed for the

investigation of the Euclidean Controllability of triple-delay control modelson the global
nonnegative interval,for state technology square matrices of order at most 6.The established
structure of the controllability matrix obviates the need for the tedious step-wise computation
of the associated determining matrices.Worthy of note is the fact that the obtained results
have alleviated the computational constraints that have forced most authors to limit their

computation of determining matrices even for much less complicated simple delay systems to

the interval [0,3h].
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