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 Abstract 

In the paper an attempt has been made to compute some characteristics of M/D/1 queue with 

finite capacity. A closed form formulae for the distribution of the number of customers in the 

system has been derived. An explicit solution for mean queue length and average waiting 

time has also been provided, Embedded Markov Chain have been used for computing in this 

model. 
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1. Introduction:  

In the present scenario, a number of servicing systems are providing services with 

constant servicing time. In the present paper, a model has been studied whose arrival pattern 

is in Poisson fashion and service facility is deterministic with finite capacity. M/D/1 queue is 

by far the simplest and the most general model. The model has a variety of applications not 

only in the telecommunication area, but also in the area of operation research, computer 

science and many other engineering areas. The model has been studied for a long time and is 

solved from a computational point of view. 

Artalejo & Corral (1997) analyzed steady state solution of a single-server queue with 

linear repeated requests. Ahahiru sule Alfa and Gordan J. Fitzpatrick (1999) considered a 

Geo/D/1 queue operating under a hybrid FIFO/LIFO discipline and obtain the waiting time 

distribution. Bruneel & Kim (1993) gave a discrete time models for communication systems 

including ATM. Erlang (1909) studied a queueing system with Poisson arrival and 

deterministic i.e. constant, service time. This model is appropriate for continuous 

deterministic service time queueing systems, input can be seen as completely random or as a 

super position of the large number of processes. This follows from the fact that in situations 

with many sources each having a small generation rate. 
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Franx, G.J. (2001) gave a simple solution for the M/D/1 waiting time distribution”. 

Gravey,Louvion et al. (1990) studied on the Geo/D/1 and Geo/D/1/N. Kumar, R and Sharma, 

S.K. (2012) studied  M/M/1/N queueing system with relation of reneged customers. Such 

type of models was also studied by Roberts, Mocci and Virtamo (1996), Vicari and Trangia 

(1996), Brun and Garcia (2000) gave an analytical solution of finite capacity M/D/1 queues.  

Woodward (1994) studied communication and computer networks, modeling with discrete 

time queues.   

2. Notations & Terminology:  

 : Arrival rate 

T : Service time of each customer is the same and constant 

 : Utilization factor = T 

Pj(N) :  Probability of j-customer  

Aj,l      : Expected amounts of time that I-customer is present during a service   time 

that is started with j-customers in the system. 

XN(t) : Number of customers in the system at time t 

tn : The date of  the n
th

 customer departure  

qj (tn) : Probability those j-customers are left behind by the n
th 

departure 

l : probability of l arrivals during a customer service  

A(Z) : Z-transform of the sequence  

TN : Average system time 

WN : Mean waiting time 

(bn)n>o: Coefficients of the Z-transform B(Z) 



 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

International Research Journal of Mathematics, Engineering and IT (IRJMEIT) 

6 | P a g e  

3. The Model 

In this section a model has been studied which has finite capacity with deterministic 

service time. In the queueing system there are N-1 places in the waiting room. The service 

mechanism is FCFS i.e. “First Come First Served” discipline. Some customers, who upon 

arrival see a full system are rejected, that is called lost customer. 

Let Aj,I the expected amount of time that I customers are present during a service time 

that is started with j-customers in the system. A scheme for the time average probabilities P-

j(N) is known for the model M/G/1/N, we get  
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Since arrivals are Poisson distributed with rate  and service time is deterministic i.e. 

constant T, we have 
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Also probability transition matrix of the Imbedded Markov Chain, and the stationary 

distribution 
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Q = [q0 ,  q1  . . . . . . . . . . . . . . . . . . .qN -1], is  a eigen vector of the matrix ,  so  

  Q  = Q      . . . . . .  (4) 

Equation (3) implies that the stationary distribution Q verifies the following linear system 
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This is a linear system of N-1 equations involving the N-unknowns q0 ,  q1 ,  - - - - -

- - - - - - - - - - - -  qN-1 ,     qn=anq0 ,  then 

 a0=1, a1=e

-1 and that a2  ………..aN-1   

obey the following recursion :  
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Let A (z) be the z- transform 
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4. Generating Function A(Z)  

Multiply by Z
n
 and summing over equation (6), we get  

Let A(Z) be the Z-transform 
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Using equation (2) we get  
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Where,        B(z) =
 )1(1

1
zze  

 

5. The Coefficients of Z-Transforms (bn) 

We have  n
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We can write   
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By equation (10) and (11), we get  
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Which proves that    a0  = 1,  an  = bn  –  bn -1  

By the z-transform F(z) as follows  
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In equation (13), mln  ,  we have 
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Adjusting this value in equation (14)  
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If ,1)1(  ze z then the series F(z) converges.  

If  z < 1, we have the following expression for the z-transform F (z) 
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Hence we get   1,)(
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By the Probability normalization  
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and  qn  = anq0  
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6. Steady State Solution 

The steady state probability distribution Q of the number of customers left behind by a 

departure differs from the queue length distribution. 

 P = [P0(N), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PN (N)], in M/D/1 

queue with finite capacity.  

We know that the probability of j -customer in case of M/G/1/N queues  
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 j  = 0,  1,  2 .. . . . . . . . . . . . . . . . . . . . . . . .  N -1 

A simple conservation law holds that  
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using the  result   =   T 
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With the help of equation (17),  we have,  
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Arranging above equation, we get  
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By equation (19),  other probabilities are given by  
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Using equation (21) we have to calculate mean number of customers.   

7. Mean Queue Length and Average Waiting Time  

XN  be the mean number of customers of the M/D/1/N queue. Since, we know 

that  
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Solving above equation, we get mean numbers of customer s 
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Let TN  be the average system time, by Little’s law  

  XN  =   (1-PN(N)) TN     . . . . . . (27)  

By equation (27)  
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 We use equation (21) & (24) in equation (28),  for value of 1 -PN (N) and 

XN .  
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We know that, 

Waiting time = Average system time – Service time 

 i.e.  WN   =  TN –  T = T
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8. Conclusion: 

In the preceding sections, the expressions for mean queue length and average waiting time 

have been obtained. A closed form formula for the distribution of the number of customers in 

the M/D/1 queue capacity has also been provided. 
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