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ABSTRACT 

If ][)( xxf pZ  is an irreducible polynomial, the number of polynomials )(xg  with 

))(())(( xfdegxgdeg  1=))(),(( xfxg  is the order of the multiplicative group of ))(]/([ xfxpZ . 

In this paper we propose a formula for this order in the case when )(xf  is any primitive 

polynomial. We arrive at this formula by introducing analogues 
pp   and  to Mobius and Euler 

functions   and  defined on ],[xpZ  the set of all primitive polynomials in ][xpZ . 
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1   Introduction 

 In the construction of cryptosystems with polynomials in ][xpZ  for prime p , the 

quotient ring of the polynomial ring in ][xpZ  with an ideal generated by ))(( xf , for )(xf  a 

polynomial in ][xpZ  is considered and the group of units of this quotient is taken as the message 

space. In this context it is important to compute the order of this group. If )(xf  is an irreducible 

polynomial then ))(]/([ xfxpZ  is a field and the group of units has 1kp  elements, for 

))((= xfdegk , [1] [11]. This group of units is given by the set 

1}=))(),(())((<))((:][)({ xfxgxfdegxgdegxxg p Z , as for any ))(]/([)( xfxxg pZ
,

)(xg  

is invertible if and only if 1=))(),(( and ))((<))(( xfxggcdxfdegxgdeg . [8]
 

 In this paper we propose a formula for the order of group of units in ))(]/([ xfxpZ , for 
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)(xf  any primitive polynomial in ][xpZ , we denote this order by ))(( xfp  and we prove this 

result for )(xf  that are not irreducible as well. We develop the formula for ))(( xfp  by using 

the analogues 
p  and 

p  to Mobius function   and Euler function   respectively.[2][3][9] 

We introduce the functions 
p  and 

p  on ][xpZ  and prove some results relating 
pp   and  

in the following section. 

 

2    and   analogues in ][xpZ : 

 

In this section we define two functions ][ on  and xppp Z  that are analogues to the 

arithmetical functions Mobius function )(n  and Euler function )(n  

2.1  
p  an analogue to Mobius function on ][xpZ : 

 

Definition 2.1.1 A real valued function 
p  on ][xpZ  is defined as follows : 

 

 0.=))((  deg  if  1=))(( xfxfp  

If 0>))((deg xf  and ,.....= 3
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fffff  for )(f xi  irreducible polynomials in ],[xpZ  
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Theorem 2.1.2 For ][)( xxf pZ  with 0))(( xfdeg  we have 






0.>))(( i 0,

0,=))(( i 1,
=))((

)()|( xfdegf

xfdegf
xdpxfxd

  

 

Proof. Let ][)( xxf pZ , then )(xf  is a primitive polynomial. If 0=))(( xfdeg , 

0  =)(  candcxf pZ  further note 1=c  as )(xf  is primitive. therefore  

 1=))((
)()|(

xdp

xfxd

  
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If 0>))(( xfdeg , with r
a

r

aaa
fffff 3

3
2

2
1

1=  and D is the set of divisors of ][)( xxf pZ  then 

for  

 and }factor eirreducibl square no has )( and )(|)(:)({=1 xdxfxdxdD  

 }factor  eirreducibl square a has)( with)(|)(:)({=2 xdxfxdxdD  

  and =)}(|)(:][)({ asgiven  is 21 DDxfxdxxdD p Z  
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 now as 1D  consists of the factors  

)),()()()(()),.......()(()),()((),......,(),(),(1, 3213121321 xfxfxfxfxfxfxfxfxfxfxf r  we 

have  

 ))((
)()|(

xdp

xfxd

  

 

)))()....()(((.....)))()((())((....))(((1)= 21211 xfxfxfxfxfxfxf rpprppp    
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 0=1)(1= r  

 therefore 0.>))(( i 0=))((
)()|(

xfdegfxdpxfxd
  

 

2.2  
p  an Analogue to Euler function   on ][xpZ : 

Definition 2.2.1 we define a function 
p  on ][xpZ  follows: 

For any ],[)( xxf pZ  

1=))(( xfp  if 0;=))(( xfdeg  

If 0>))(( xfdeg . 
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Then ))(( xfp  is the number of polynomials ][  )( xxg pZ  such that  

))((<))(( xfdegxgdeg  and 1=))(),(( xfxg . 

 

 Note: 1=))((

))(),((

)(
1=



n

xfxg
f

kxg
i

p xf  where ))}((<))((:][)({= xfdegxgdegxxgk pf Z ,  

 

Theorem 2.2.2 For 1))(( xfdeg  we have  
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Proof.  Let ))}((<))((:][)({= xfdegxgdegxxgk pf Z . 

And note if sxfdeg =))(( , then for all .))((],[)( sxgdegxxg p Z  

we have 1
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Theorem 2.2.3 For 0))(( xfdeg  we have  
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p
p

pxf   where the product runs over the irreducible 

factors of )(xf . 

 

Proof. If 0=))(( xfdeg  we have cxf =)(  and by definition we have 

1=)(=))(( cxf pp  . On the R.H.S the product is empty and as 1== 0))(( pp xfdeg . Therefore the 

result holds for 0=))(( xfdeg . 

Now if 0>))(( xfdeg  and let r
e

r

ee
gggxf 2

2
1

1 .=)( , Then  

 )
1

(1=)
1

(1
))((

1=
))((

)()|(
x

i
gdeg

r

i
xgdeg

xfxg pp
   

 
))(())(

1
())(())((

,
))((

....

1)(
...

.

11
1=

x
r

gdegxgdeg

r

x
j

gdegx
i

gdeg
ji

x
i

gdeg
i ppppp


   

 
))((..))(

1
())(())((

,
))((

1)(
...

11
1=

x
r

gdegxgdeg

r

x
j

gdegx
i

gdeg
ji

x
i

gdeg
i ppp




   

 
))()...(

1
())().((

2

,
))((

1)(
...

1)(1
1=

x
r

gxgdeg

r

x
j

gx
i

gdeg
ji

x
i

gdeg
i ppp





   

 
))((

))((

))((
)()|(

)(
=

xfdeg

xfdeg

xddeg

p

xfxd p

p

p

d
  

 
))((

))((

)()|(
))((

).(1
=

xddeg

xfdeg

p

xfxd
xfdeg p

pd

p


  

 ))((.
1

=
))((

xf
p

pxfdeg
  



 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

International Research Journal of Mathematics, Engineering and IT (IRJMEIT) 

68 | P a g e  

 )
1

(1.=))((
))((

)()|(

))((

xgdeg
xfxg

xfdeg

p
p

pxf   

 where the product is over )(xg , irreducible factors of )(xf  

 

Example 2.2.4 Let ][  2=)( 3

2 xxxxf Z , then )(xf  is an irreducible polynomial 

over 3Z  and 2)]/([ 2

3  xxxZ  is a field with 23  elements, [4] therefore there are 8=1)(32   

invertible elements in this field,that is 8=))(( xfp .  

Now by the above formula we have )
1
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The group of units is given as  

1}=))(),(( a ,;=)(:))(/()({ 33 xfxgndbabaxxgxfxg ZZ   

 

Example 2.2.5Let 2=)( 2 xxf  and ][3 xZ ,  then 2=)( 2 xxf   is reducible over 3Z  

and 

1)1)((=2=)( 2  xxxxf . 

 Now by the above formula we have  
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 Further given ][ 2=)( 3

2 xxxf Z , 4=))((3 xf  and note that 

2}1,2,22,21,,{0,1,2,  xxxxxx  is the set of all elements of 2)]/([ 2

3 xxZ  and the four 

invertible elements are }.,2{1,2, xx  

 

3  Conclusion: 

 The formula for ))(( xfp  gives the order of the multiplicative group ))(]/([ xfxpZ  for 

)(xf  any primitive polynomial in ][xpZ ; This product formula developed is quite useful in the 

construction of cryptosystem with polynomial in ))(]/([ xfxpZ , with the group of units of the 

quotient ))(]/([ xfxpZ  as message space.  
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