

COUNTING IN $Z_p[x]$

1 P. Anuradha Kameswari, ²Y. Swathi Department of Mathematics, Andhra University, Visakhapatnam - 530003, Andhra Pradesh, India.

ABSTRACT

If $f(x) \in Z_p[x]$ is an irreducible polynomial, the number of polynomials $g(x)$ with $deg(g(x)) \leq deg(f(x)) \ni (g(x), f(x)) = 1$ *is the order of the multiplicative group of* $Z_p[x]/(f(x))$ *.* In this paper we propose a formula for this order in the case when $f(x)$ is any primitive *polynomial. We arrive at this formula by introducing analogues* μ_p *and* ϕ_p *to Mobius and Euler functions* μ and ϕ defined on $\wp Z_p[x]$, the set of all primitive polynomials in $Z_p[x]$.

Key words : Finite field, Primitive poylnomials

1 Introduction

In the construction of cryptosystems with polynomials in $Z_p[x]$ for prime p, the quotient ring of the polynomial ring in $Z_p[x]$ with an ideal generated by $(f(x))$, for $f(x)$ a polynomial in $Z_p[x]$ is considered and the group of units of this quotient is taken as the message space. In this context it is important to compute the order of this group. If $f(x)$ is an irreducible polynomial then $Z_p[x]/(f(x))$ is a field and the group of units has p^k-1 elements, for $k = deg(f(x))$. , [1] [11]. This group of units is given by the set $\{g(x) \in Z_p[x]: deg(g(x)) < deg(f(x)) \ni (g(x), f(x)) = 1\}$, as for any $g(x) \in Z_p[x]/(f(x))$, $g(x)$ is invertible if and only if $deg(g(x)) < deg(f(x))$ and $gcd(g(x), f(x)) = 1$. [8]

In this paper we propose a formula for the order of group of units in $Z_p[x]/(f(x))$, for

(*x*) any primitive polynomial in $Z_j[x]$, we denote this order by $\phi_s(f(x))$ and we prove this
seal for $f(x)$ that are not irreducible as well. We develop the formula for $\phi_s(f(x))$ position
the manipume μ_s and ϕ_s to Mo any primitive polynomial in $Z_p[x]$, we denote this order by $\phi_p(f(x))$ and we prove this result for $f(x)$ that are not irreducible as well. We develop the formula for $\phi_p(f(x))$ by using the analogues μ_p and ϕ_p to Mobius function μ and Euler function ϕ respectively.[2][3][9] We introduce the functions μ_p and ϕ_p on $\wp Z_p[x]$ and prove some results relating μ_p and ϕ_p in the following section.

2 μ and ϕ analogues in $Z_p[x]$:

In this section we define two functions μ_p and ϕ_p on $\wp Z_p[x]$ that are analogues to the arithmetical functions Mobius function $\mu(n)$ and Euler function $\phi(n)$

2.1 μ_p an analogue to Mobius function on $\mathcal{BZ}_p[x]$:

Definition 2.1.1 A real valued function μ_p on $\wp Z_p[x]$ is defined as follows :

$$
\mu_p(f(x)) = 1
$$
 if deg $(f(x)) = 0$.

If deg($f(x)$) > 0 and $f = f_1^{a_1} f_2^{a_2} f_3^{a_3} \dots f_n^{a_n}$, *n* $f = f_1^{a_1} f_2^{a_2} f_3^{a_3} \dots f_n^{a_n}$, for $f_i(x)$ irreducible polynomials in $Z_p[x]$,

$$
\mu_p(f(x)) = \begin{cases} (-1)^n, & \text{if } a_1 = a_2 = a_3 = \dots a_n = 1, \\ 0 & \text{otherwise.} \end{cases}
$$

Theorem 2.1.2 For $f(x) \in \mathcal{D}Z_p[x]$ with $deg(f(x)) \ge 0$ we have

$$
\sum_{d(x)|f(x)} \mu_p(d(x)) = \begin{cases} 1, & \text{if } deg(f(x)) = 0, \\ 0, & \text{if } deg(f(x)) > 0. \end{cases}
$$

Proof. Let $f(x) \in \mathcal{D}Z_p[x]$, then $f(x)$ is a primitive polynomial. If $deg(f(x)) = 0$, $f(x) = c \in \mathbb{Z}_p$ *and* $c \neq 0$ further note $c = 1$ as $f(x)$ is primitive. therefore

$$
\sum_{d(x)|f(x)} \mu_p(d(x)) = 1
$$

If $deg(f(x)) > 0$, with $f = f_1^{a_1} f_2^{a_2} f_3^{a_3} \dots f_r^{a_r}$ *r* $f = f_1^{a_1} f_2^{a_2} f_3^{a_3} \dots f_r^{a_r}$ and D is the set of divisors of $f(x) \in \mathbb{Z}_p[x]$ then for

> $D_1 = \{d(x) : d(x) \mid f(x) \text{ and } d(x) \text{ has no square irreducible factor} \}$ and $D_2 = {d(x) : d(x) | f(x)}$ with $d(x)$ has a square irreducible factor } *D* is given as $\{d(x) \in Z_p[x]: d(x) | f(x)\} = D_1 \cup D_2$ and

$$
\sum_{d(x)|f(x)} \mu_p(d(x)) = \sum_{\substack{d(x)|f(x) \\ d(x) \in D}} \mu_p(d(x))
$$
\n
$$
= \sum_{\substack{d(x)|f(x) \\ d(x) \in D_1 \cup D_2}} \mu_p(d(x)) + \sum_{\substack{d(x)|f(x) \\ d(x) \in D_1}} \mu_p(d(x)) + \sum_{\substack{d(x)|f(x) \\ d(x) \in D_2}} \mu_p(d(x))
$$

now as D_1 consists of the factors

$$
d(x) \in D_1
$$

\n
$$
d(x) \in D_2
$$

\n
$$
D_1 \text{ consists of the factors}
$$

\n
$$
1, f_1(x), f_2(x), f_3(x), \dots, (f_1(x)f_2(x)), (f_1(x)f_3(x)), \dots, (f_1(x)f_2(x)f_3(x), \dots, f_r(x)),
$$
 we

have

$$
\sum_{d(x)|f(x)} \mu_p(d(x))
$$

$$
= \mu_p(1) + \mu_p(f_1(x)) + \dots + \mu_p(f_r(x)) + \mu_p((f_1(x)f_2(x))) + \dots + \mu_p((f_1(x)f_2(x)\dots f_r(x)))
$$

$$
= 1 + {r \choose 1}(-1) + {r \choose 2}(-1)^2 + \dots + {r \choose r}(-1)^r
$$

$$
= (1-1)^r = 0
$$

therefore $\sum_{d(x)|f(x)} \mu_p(d(x)) = 0$ if $deg(f(x)) > 0$.

2.2 ϕ_p an Analogue to Euler function ϕ on $\wp Z_p[x]$:

Definition 2.2.1 we define a function ϕ_p on $\wp Z_p[x]$ follows:

For any $f(x) \in \mathcal{D}Z_p[x]$, $\phi_p(f(x)) = 1$ if $deg(f(x)) = 0;$ If $deg(f(x)) > 0$.

Then $\phi_p(f(x))$ is the number of polynomials $g(x) \in Z_p[x]$ such that $deg(g(x)) < deg(f(x))$ and $(g(x), f(x)) = 1$.

Note:
$$
\phi_p(f(x)) = \sum_{\substack{i=1 \ g(x) \in k_f \\ g(x) \in k}}^n 1
$$
 where $k_f = \{g(x) \in Z_p[x]: deg(g(x)) < deg(f(x))\}$,

Theorem 2.2.2 For $deg(f(x)) \ge 1$ we have

$$
\phi_p(f(x)) = \sum_{d(x)|f(x)} \mu_p(d(x)). \frac{p^{\deg(f(x))}}{p^{\deg(d(x))}}
$$

Proof. Let $k_f = {g(x) \in Z_p[x] : deg(g(x)) < deg(f(x)) }$. And note if $deg(f(x)) = s$, then for all $g(x) \in Z_p[x]$, $deg(g(x)) \leq s$. we have $g(x) = a_0 + a_1 x + ... + a_{s-1} x^{s-1}$ for $a_i \in \mathbb{Z}_p \forall 0 \le i \le s$ Now as the number of k_f has p^s elements[8]

Possible sequences $(a_0, a_1, a_2, ..., a_{s-1}) = p^s$

$$
\phi_p(f(x)) = \sum_{\substack{g_i(x) \in k_f \\ (g_i(x), f(x)) = 1}} 1
$$
\n
$$
= \sum_{\substack{i=1 \\ i \equiv d(x) | (g_i(x), f(x))}}^{\sum_{i=1}^s} 1
$$
\n
$$
= \sum_{i=1}^{\sum_{d(x) | (g_i(x), f(x))}} \mu_p(d(x)) \quad (By theorem 2.1.2)
$$
\n
$$
= \sum_{i=1}^{\sum_{d(x) | g_i(x)}} \mu_p(d(x))
$$
\n
$$
= \sum_{d(x) | f(x)}^{\sum_{p \neq g} (f(x)) - deg(d(x))} \mu_p(d(x)
$$

$$
= \sum_{d(x)|f(x)} \mu_p d(x) \sum_{i=1}^{p \deg(f(x)) - \deg(d(x))} 1
$$

$$
= \sum_{d(x)|f(x)} \mu_p (d(x)). \frac{p^{\deg(f(x))}}{p^{\deg(d(x))}}
$$

Therefore $\phi_p(f(x)) = \sum_{d(x)|f(x)} \mu_p (d(x)). \frac{p^{\deg(f(x))}}{p^{\deg(d(x))}}$

Theorem 2.2.3 For $deg(f(x)) \ge 0$ we have

 $(f(x)) = p^{deg(f(x))} \prod_{g(x) \nmid f(x)} (1 - \frac{1}{n^{deg(g(x))}})$ $(f(x))$ $g(x)$ $f(x)$ $\qquad \qquad$ *n deg* (g(x) *deg f x* $\phi_p(f(x)) = p^{\deg(f(x))} \prod_{g(x)|f(x)} (1 - \frac{1}{p^{\deg(g(x))}})$ where the product runs over the irreducible

factors of $f(x)$.

Proof. If $deg(f(x)) = 0$ we have $f(x) = c$ and by definition we have $\phi_p(f(x)) = \phi_p(c) = 1$. On the R.H.S the product is empty and as $p^{\deg(f(x))} = p^0 = 1$. Therefore the result holds for $deg(f(x)) = 0$.

Now if $deg(f(x)) > 0$ and let $f(x) = g_1^{e_1} \cdot g_2^{e_2} \dots g_r^{e_r}$ *r* $f(x) = g_1^{e_1} \cdot g_2^{e_2} \dots g_r^{e_r}$, Then

$$
\prod_{g(x)|f(x)} (1 - \frac{1}{p^{\deg(g(x))}}) = \prod_{i=1}^{r} (1 - \frac{1}{p^{\deg(g_i(x))}})
$$
\n
$$
= 1 - \sum_{i} \frac{1}{p^{\deg(g_i(x))}} + \sum_{i,j} \frac{1}{p^{\deg(g_i(x))} \cdot p^{\deg(g_j(x))}} + \dots + \frac{(-1)^{r}}{p^{\deg(g_i(x))} \cdot \dots p^{\deg(g_r(x))}}
$$
\n
$$
= 1 - \sum_{i} \frac{1}{p^{\deg(g_i(x))}} + \sum_{i,j} \frac{1}{p^{\deg(g_i(x)) + \deg(g_j(x))}} + \dots + \frac{(-1)^{r}}{p^{\deg(g_i(x)) + \dots + \deg(g_r(x))}}
$$
\n
$$
= 1 - \sum_{i} \frac{1}{p^{\deg(g_i(x))}} + \sum_{i,j} \frac{(-1)^{2}}{p^{\deg(g_i(x), g_j(x))}} + \dots + \frac{(-1)^{r}}{p^{\deg(g_i(x)) \cdot \dots \cdot g_r(x)}}
$$
\n
$$
= \sum_{d(x)|f(x)} \frac{\mu_p(d)}{p^{\deg(d(x))}} \frac{p^{\deg(f(x))}}{p^{\deg(f(x))}}
$$
\n
$$
= \frac{1}{p^{\deg(f(x))}} \sum_{d(x)|f(x)} \frac{\mu_p(d) \cdot p^{\deg(d(x))}}{p^{\deg(d(x))}}
$$

$$
\phi_p(f(x)) = p^{\deg(f(x))} \cdot \prod_{g(x) \mid f(x)} (1 - \frac{1}{p^{\deg(g(x))}})
$$

where the product is over $g(x)$, irreducible factors of $f(x)$

f (x)

en $f(x)$ is an irreducible polynomial

nents, [4] therefore there are $(3^2-1)=8$
 $p^{deg(f(x))} \cdot \prod_{g(x)f(x)} (1 - \frac{1}{p^{\frac{1}{deg(g(x))}}})$
 $g(x), f(x)) = 1$ }

then $f(x) = x^2 + 2$ is reducible over Z_3
 5. Engineering and IT (IRJMEIT) **Example 2.2.4** Let $f(x) = x^2 + x + 2 \in \mathbb{Z}_3[x]$, then $f(x)$ is an irreducible polynomial over Z_3 and $Z_3[x]/(x^2+x+2)$ is a field with 3^2 elements, [4] therefore there are $(3^2-1)=8$ invertible elements in this field, that is $\phi_p(f(x)) = 8$.

Now by the above formula we have $\phi_p(f(x)) = p^{\deg(f(x))} \cdot \prod_{g(x)|f(x)} (1 - \frac{1}{n^{\deg(g(x))}})$ $(f(x))$ $g(x)$ $f(x)$ $\qquad \qquad$ *n* $deg(g(x))$ *deg f x* $\phi_p(f(x)) = p^{deg(f(x))} \cdot \prod_{g(x)|f(x)} (1 - \frac{1}{p})$

$$
\phi_3(x^2 + x + 2) = 3^2 \cdot (1 - \frac{1}{3^2})
$$

= 3² - 1
= 8.

The group of units is given as

$$
\{g(x) \in Z_3/(f(x)) : g(x) = ax + b; a, b \in Z_3 \text{ and } (g(x), f(x)) = 1\}
$$

Example 2.2.5*Let* $f(x) = x^2 + 2$ *and* $\mathbb{Z}_3[x]$, then $f(x) = x^2 + 2$ is reducible over \mathbb{Z}_3

and

$$
f(x) = x^2 + 2 = (x - 1)(x + 1).
$$

Now by the above formula we have

$$
\phi_p(f(x)) = p^{\deg(f(x))} \cdot \prod_{g(x)|f(x)} (1 - \frac{1}{p^{\deg(g(x))}})
$$

= 3² (1 - $\frac{1}{3}$)(1 - $\frac{1}{3}$)
= (3-1)(3-1)
= 2.2
= 4

Further given $f(x) = x^2 + 2 \in \mathbb{Z}_3[x]$ $f(x) = x^2 + 2 \in \mathbb{Z}_3[x]$, $\phi_3(f(x)) = 4$ and note that $\{0,1,2,x,x+1,x+2,2x,2x+1,2x+2\}$ is the set of all elements of $Z_3[x]/(x^2+2)$ and the four invertible elements are $\{1,2,x,2x\}$.

3 Conclusion:

The formula for $\phi_p(f(x))$ gives the order of the multiplicative group $Z_p[x]/(f(x))$ for $f(x)$ any primitive polynomial in $Z_p[x]$; This product formula developed is quite useful in the construction of cryptosystem with polynomial in $Z_p[x]/(f(x))$, with the group of units of the quotient $Z_p[x]/(f(x))$ as message space.

References

[1] Tom M. Apostol, *Introduction to Analytic Number Theory* Springer-Verlag, New York Inc.

[2] P.B.Battacharya, S.K.Jain and S.R.Nagpaul, *BASIC ABSTRACT ALGEBRA*, Second Edition, 1995, cambridge university press,ISBN 0-521-46629-6.

[3] Alina Carmen Cojocaru and M.RamMurty, *An Introduction to Sieve Methods and their Applications*, cambridge university press,2005,ISBN-13 978-0-521-17034-5.

[4] ABHIJIT DAS, *Computational Number Theory*, CRC Press,A CHAPMAN and HALL BOOK.

[5] Kenneth Ireland and Michael Rosen, *A Classical Introduction to Modern Number Theory*, 1972, Spring Science+Business Media LLC, ISBN 978-1-4757-17815.

[6] David M.Burton, *Elementary Number Theory*, Universal Bookstall.

[7] Victor Shoup, *A computational Introduction to Number Theory and Algebra*, 2005, cambridge university press,ISBN-13 978-0-521-85154-1

[8] Gary L.Muller, Carl Mummert,*Finite Fields and Appilications*, Indian Edition, STUDENT MATHEMATICAL LIBRARY, Volume 41, ISBN 9780821887325

[9] James. J.Tattersall, *Elementary Number Theory in Nine Chapters*, second Edition, cambridge university press, ISBN 978-1-107-67000-6.

[10] Rudolflidl and Harald Niederreiter, *Finite Fields*, cambridge university press, ISBN 0521392314.

[11] S.R.Nagpaul, S.K.Jain, textitTopics in applied Abstract Algebra, Indian Edition, American Mathematical Society, ISBN 978-0-8218-5213-2.