

MATRIX TRANSFORMATIONS BETWEEN GENERALIZED RIESZ SEQUENCE SPACES OF NON ABSOLUTE TYPE

Zakawat U. Siddiqui and Ado Balili

Department of Mathematics and Statistics, University of Maiduguri, Borno State, Nigeria.

ABSTRACT

The main purpose of this paper is to characterize the classes $(r^q(u, p, s), bs), (r^q(u, p, s), cs)$ and $(r^q(u, p, s), c_0s)$ of the infinite matrices, where bs, cs and c_0s denote the space of all bounded series, the space of all convergent series and the space of series converging to zero, respectively.

KEYWORDS: Generalized Riesz Sequence Space, Matrix Transformations, Paranormed Sequence Spaces, Sequence Space of Non Absolute Type,.

Mathematical Subject Classification (AMS 2010): 46A45, 46B25, 40C05

1. INTRODUCTION

A sequence space is defined to be a linear space of real or complex sequences. Throughout the paper \mathbb{N} , \mathbb{R} and \mathbb{C} denote the set of non negative integers, the set of real numbers and the set of complex numbers, respectively. Let ω denote the space of all sequences (real or complex), ℓ_{∞} and *c*, respectively denote the space of all bounded sequences and the space of all convergent sequences. A linear topological space X over the field of real numbers \mathbb{R} is said to be a paranormed space if there is a sub additive function $h: X \to \mathbb{R}$ such that $h(\theta) = 0, h(-x) = h(x)$ and scalar multiplication is continuous, that is , $|\alpha_n - \alpha| \to 0$ and $h(x_n - x) \to 0$ imply $h(\alpha_n x_n - \alpha x) \to 0$, as $n \to \infty$ for all $\alpha' s$ in \mathbb{R} and x' s in X, where θ is the zero vector in the linear space X. Assuming here and after that (p_k) be a bounded sequence of strictly positive real numbers with $\sup_k p_k = H$ and $M = \max(1, H)$. Then the linear space $\ell(p)$ and $\ell_{\infty}(p)$ were defined by Maddox [1], (see also [2], [3] and [4]) as follows:

$$\ell(p) = \{ x = (x_k) : \sum_k |x_k|^{p_k} < \infty \} \text{ with } 0 < p_k \le H < \infty.$$
$$\ell_{\infty}(p) = \left\{ x = (x_k) : \sup_k |x_k|^{p_k} < \infty \right\}$$

which are complete spaces paranormed, respectively by

$$g_1(x) = \left[\sum_k |x_k|^{p_k}\right]^{\frac{1}{M}}$$
 and $g_2(x) = \sup_k |x_k|^{p_k/M}$ iff $\inf_k p_k > 0$.

We shall assume throughout that $p_k^{-1} + t_k^{-1} = 1$ and provided $1 < infp_k \le H < \infty$.

In [5] Stieglitz and Tietz defined

$$cs = \{ x = (x_k) : (\sum_{k=1}^n x_k) \in c \}$$
(1.1)

$$c_0 s = \{ x = (x_k) : (\sum_{k=1}^n x_k) \in c_0 \}$$
(1.2)

$$bs = \{ x = (x_k) : (\sum_{k=1}^n x_k) \in \ell_{\infty} \}$$
(1.3)

For the sequence spaces X and Y, define the set

$$M(X, Y) = \{ z = (z_k) \in \omega : xz = (x_k z_k) \in Y, \text{ for all } x \in X \}.$$
(1.4)

With the notion of (1.4) the $\alpha -, \beta - and \gamma - duals$ of a sequence space X, which are respectively denoted by X^{α}, X^{β} and X^{γ} and are defined by

$$X^{\alpha} = M(X, \ell_1), X^{\beta} = M(X, cs) \text{ and } X^{\gamma} = M(X, bs).$$

If a sequence space X paranormed by h contains a sequence (b_n) with the property that for every $x \in X$, there is a unique sequence of scalars (α_n) such that

$$\lim_{n} h(x - \sum_{k=0}^{n} \alpha_k b_k) = 0$$

Then (b_n) is called a Schauder basis or (briefly basis) for X. The series $\sum_k \alpha_k b_k$ which has the sum x is then called the expansion of x with respect to (b_n) , written as $x = \sum_k \alpha_k b_k$.

Let X and Y be a two subsets of ω . Let $A = (a_{nk})$ be an infinite matrix of real or complex numbers a_{nk} , where $n, k \in \mathbb{N}$. Then the matrix A defined the A-transformation from X into Y, if for every sequence $x = (x_k) \in X$. The sequence $Ax = (Ax)_n$, the A-transform of x exists and is in Y, where $= (Ax)_n = \sum_k a_{nk} x_k$. For simplicity of notation, here and what follows, the summation without limits runs from 0 to ∞ . By (X, Y), we denote the class of all matrices. A sequence x is said to be A-summable to 1 if Ax converges to 1 which is called the Alimit of x.

For a sequence space X, the matrix domain X_A of an infinite matrix A is defined as

$$X_A = \{ x = (x_k) : (Ax) \in X \}.$$
(1.5)

2. SOME BASIC DEFINITIONS AND LEMMAS

In this section we give some important definitions which shall be used in this work.

Definition 2.1 Let $q = (q_i)$ be a sequence of positive real numbers and let write

 $Q_n = \sum_{i=1}^{n} q_i$ for $n \in \mathbb{N}$. Then the matrix $R^q = (r_{nk}^q)$ of the Riesz mean (R, q_n) is given by

$$(r_{nk}^{q}) = \begin{cases} \frac{q_{k}}{Q_{k}} & \text{if } 0 \le k \le n \\ 0, & \text{if } k > n \end{cases}$$
 (2.1)

The Riesz mean (R, q_n) is regular if and only if $Q_n \to \infty$, as $n \to \infty$.

(See Petersen [6] and [7])

Recently, the following Riesz sequence space was introduced.

Definition 2.2 (Sheik and Ganie [8]) defined and studied the Riesz sequence space $r^q(u, p)$ of non–absolute type by

$$r^{q}(u,p) = \{ x = (x_{k}) \in \omega : \sum_{n=1}^{\infty} |\frac{1}{Q_{n}} \sum_{k=1}^{n} u_{k} q_{k} x_{k}|^{p_{k}} < \infty \}, \text{ where } 0 < p_{k} \le H < \infty.$$

Definition 2.3 (Fazlur Rahman and Rezaul Karim [9]) For $s \ge 0$, we define

$$r^{q}(u, p, s) = \{ x = (x_{k}) \in \omega : \sum_{n=1}^{\infty} | \frac{1}{Q_{n}^{s+1}} \sum_{k=1}^{n} u_{k} q_{k} x_{k} |^{p_{k}} < \infty \},\$$

If s = 0, then $r^q(u, p, s)$ reduces to $r^q(u, p)$ which is defined and studied in [7].

Now the sequence $y = (y_k)$ is defined by

$$y_k = \frac{1}{Q_k^{s+1}} \sum_{j=1}^k u_j q_j x_j$$
(2.2)

Note the following inequality (see [10]), which will be used in this paper.

For any integer E > 1 and any two complex numbers *a* and *b* we have

$$|a.b| \le E(|a|^t E^{-t} + |b|^p)$$
(2.3)

Lemma 2.1 ([9], Theorem 1.1)

The Riesz sequence space $r^{q}(u, p, s)$ is a complete linear metric space paranormed by

$$g(x) = \left(\sum_{n=1}^{\infty} |\frac{1}{Q_n^{s+1}} \sum_{k=1}^n u_k q_k x_k|^{p_k}\right)^{1/M}.$$

Lemma 2.2 ([9], Theorem 2.1). Let $1 < p_k \le H < \infty$, for every $k \in \mathbb{N}$.

Define the sets $D_1(u, p, s)$ and $D_2(u, p, s)$ as follows:

$$D_1(u, p, s) = \bigcup_{E>1} \{ a = (a_k) \in \omega: \sup_{n \in \mathcal{F}} \sum_k |\sum_{n \in \mathbb{N}} (-1)^{n-k} \frac{a_n}{u_n q_n} Q_k^{s+1} E^{-1} |^{t_k} < \infty \}$$
(2.4)

$$D_{2}(u, p, s) = \bigcap_{E>1} \{ a = (a_{k}) \in \omega: \sum_{k} |\Delta(\frac{a_{k}}{u_{k}k})Q_{k}^{s+1}E^{-1}|^{t_{k}} < \infty \}$$
and
$$((\frac{a_{k}}{u_{k}q_{k}}Q_{k}^{s+1}E^{-1})^{t_{k}} \in \ell_{\infty} \}$$
(2.5)

Then,

$$[r^{q}(u, p, s)]^{\alpha} = D_{1}(u, p, s) \text{ and } [r^{q}(u, p, s)]^{\beta} = [r^{q}(u, p, s)]^{\gamma} = D_{2}(u, p, s)$$

Lemma 2.3 ([9], Theorem 2.2): Let $0 < p_k \le 1$. for every $k \in \mathbb{N}$. Define $D_3(u, p, s)$ and $D_4(u, p, s)$ as

$$D_{3}(u, p, s) = \{ a = (a_{k}) \in \omega: \sup_{n \in \mathcal{F}} \sup_{k} |\sum_{n \in \mathbb{N}} (-1)^{n-k} \frac{a_{n}}{u_{n}q_{n}} Q_{k}^{s+1} E^{-1} |^{p_{k}} < \infty \}$$
(2.6)

$$D_{4}(u, p, s) = \begin{cases} a = (a_{k}) \in \omega: \sup_{k} |\Delta a_{n} q_{k} Q_{k}^{s+1} E^{-1}|^{p_{k}} < \infty \\ and \sup_{k} |\frac{a_{n}}{u_{n} q_{n}} Q_{k}^{s+1} E^{-1}|^{p_{k}} < \infty \end{cases}$$

$$(2.7)$$

Then,

$$[r^{q}(u,p,s)]^{\alpha} = D_{3}(u,p,s) \text{ and } [r^{q}(u,p,s)]^{\beta} = [r^{q}(u,p,s)]^{\gamma} = D_{4}(u,p,s).$$

Lemma 2.4 ([9], Theorem 3.1)

(i) Let $1 < p_k \le H < \infty$, for every $k \in \mathbb{N}$. Then $A \in (r^q(u, p, s), \ell_{\infty})$ if and only if there exists an integer E > 1 such that

$$U(E) = \sup_{n} \sum_{k} |\Delta_{u_{k}q_{k}}^{a_{nk}} Q_{k}^{s+1} E^{-1}|^{t_{k}} < \infty$$
(2.8)

and

$$\left(\frac{a_{nk}}{u_k q_k} Q_k^{s+1} E^{-1}\right)^{t_k} \in \ell_{\infty}$$

$$(2.9)$$

(ii) Let $0 < p_k \le 1$, for every $k \in \mathbb{N}$. Then $A \in (r^q(u, p, s), \ell_{\infty})$ if and only if

$$\sup_{n} \frac{a_{nk}}{u_{k}q_{k}} Q_{k}^{s+1} E^{-1} |^{p_{k}} < \infty$$
(2.10)

Lemma 2.5 ([9], Theorem 3.2). Let $1 < p_k \le H < \infty$, for every $k \in \mathbb{N}$. Then $A \in (r^q(u, p, s), c)$ if and only if conditions (2.8) and (2.9) hold, and there is a sequence of scalars (α_k) such that

$$\lim_{n} \Delta \frac{a_n}{u_n q_n} Q_k^{s+1} = \beta_k \tag{2.11}$$

Lemma 2.6 ([9], Corollary 3.1). Let $1 < p_k \le H < \infty$, for each $k \in \mathbb{N}$. Then $A \in (r^q(u, p, s), c_0)$ if and only if the conditions (2.8), (2.9) hold and (2.11) holds with $\beta_k = 0$, for each $k \in \mathbb{N}$.

3. MAIN RESULTS

In this section we characterize the matrix classes $(r^q(u, p, s), bs), r^q(u, p, s), cs)$, and $r^q(u, p, s), c_0 s$). We shall prove the following results.

Theorem 3.1 (i) Let $1 < p_k \le H < \infty$, for every $k \in \mathbb{N}$. Then $A \in (r^q(u, p, s), bs)$ if and only if there exists an integer B > 1 such that

$$\sup_{n} \sum_{k} |\Delta_{\frac{a_{nk}}{u_{k}q_{k}}} Q_{k}^{s+1} B^{-1}|^{t_{k}} < \infty, n \in \mathbb{N}.$$

$$(3.1)$$

and

$$\sup_{k} \frac{a_{nk}}{u_{k}q_{k}} Q_{k}^{s+1} B^{-1} |^{t_{k}} < \infty, n \in \mathbb{N}.$$
(3.2)

(ii) Let $0 < p_k \le 1$, for every $k \in \mathbb{N}$. Then $A \in (r^q(u, p, s), bs)$ if and only if

$$\sup_{n} \frac{a_{nk}}{u_k q_k} Q_k^{s+1} |^{p_k} < \infty$$
(3.3)

Proof. Let us define the matrix $E = (e_{nk})$ by $e_{nk} = a(n, k)$ for all $n \in \mathbb{N}$, consider now equality derived from the *n*; *mth* partial sum of the series $\sum_{i}^{n} \sum_{k}^{m} a_{ik} x_{k}$ as $m \to \infty$,

$$\sum_{i=1}^{n} \sum_{k} a_{jk} x_{k} = \sum_{k} e_{nk} x_{k} \text{ for all } n, k \in \mathbb{N}.$$

Therefore, bearing in mind the fact that the space bs and ℓ_{∞} are linearly isomorphic, one can easily see that $Ax \in bs$ whenever $x \in r^q(u, p, s)$ if and only if $Ex \in \ell_{\infty}$, whenever $x \in r^q(u, p, s)$.

Moreover, let $A \in (r^q(u, p, s), bs)$. Then $A_n(x) = \sum_k a_{nk} x_k$ exists for $x \in r^q(u, p, s)$ and this implies that $(a_{nk}) \in [r^q(u, p, s)]^\beta$ for every $n, k \in \mathbb{N}$. So by lemma 2.1, the necessities of (3.1) and (3.2) hold.

Sufficiency. Suppose the conditions (3.1) and (3.2) hold.

For $m, n \in \mathbb{N}$, consider the equation

$$\sum_{k=1}^{m} a_{nk} x_k = \sum_{k=1}^{m-1} \Delta\left(\frac{a_{nk}}{u_k q_k}\right) Q_k^{s+1} y_k + \frac{a_{nm}}{u_m q_m} Q_m^{s+1} y_m$$
(3.3)

when $m \to \infty$, then from (3.3) we have

$$\sum_{k=1}^{\infty} a_{nk} x_k = \sum_{k=1}^{\infty} \Delta\left(\frac{a_{nk}}{u_k q_k}\right) Q_k^{s+1} y_k \tag{3.4}$$

Using inequality (2.3) and (3.4)

$$\sup_{n} |\sum_{k=1}^{\infty} a_{nk} x_{k}| \leq \sup_{n} \sum_{k=1}^{\infty} |\Delta\left(\frac{a_{nk}}{u_{k}q_{k}}\right) Q_{k}^{s+1}| |y_{k}|$$
$$\leq B \sup_{n} [\sum_{k=1}^{\infty} |\Delta\left(\frac{a_{nk}}{u_{k}q_{k}}\right) Q_{k}^{s+1}|^{t_{k}} B^{-t_{k}} + \sum_{k} |y_{k}|^{p_{k}}]$$
$$\leq B[U(B) + g_{1}^{M}(y) < \infty$$

This shows that $A \in (r^q(u, p, s), bs)$.

(ii) The proof of the second part is similar to that of the part (i). Therefore it is omitted.

Theorem 3.2: Let $1 < p_k \le H < \infty$, for every $k \in \mathbb{N}$. Then $A \in (r^q(u, p, s), cs)$ if and only if (3.1), (3.2) hold and there is a sequence of scalars (α_k) such that

$$\lim_{n} \Delta \frac{a_{n} - \alpha_{k}}{u_{k} q_{k}} Q_{k}^{s+1} = \beta_{k} \text{ for every } n.k \in \mathbb{N}.$$
(3.5)

Proof. Necessity Suppose $A \in (r^q(u, p, s), cs)$ and $1 < p_k \le H < \infty$, Then the A-transformation of $r^q(u, p, s)$ exists and belong to cs. Hence, $(a_{nk}) \in [r^q(u, p, s)]^{\beta}$. By Lemma (2.1), the necessities of (3.1) and (3.2) hold. For the necessity of condition (3.5), we take for each fixed k, a sequence $x^{(k)} = (x_n^{(k)}(q))$ in $r^q(u, p, s)$ with

$$x_n^{(k)}(q) = \begin{cases} (-)^{n-k} \frac{Q_k^{s+1}}{u_n q_n}, & \text{if } k \le n \le k+1 \\ 0, & \text{if } 0 \le n < k \text{ or } n > k+1 \end{cases}$$

Then for each $k \in \mathbb{N}$, we have $Ax^k \in cs$, which shows that

 $(\Delta \frac{a_n - \alpha_k}{u_k q_k} Q_k^{s+1}) \in c$. This proves the necessity of the condition (3.5).

Sufficiency. Suppose that the conditions (3.1), (3.2) and (3.5) hold. Then for $x \in r^q(u, p, s)$, we have $(a_{nk}) \in [r^q(u, p, s)]^\beta$ for each n and so $Ax = \sum_k a_{nk} x_k$ exists.

For every $m, n \in \mathbb{N}$, we have

$$\sum_{k=1}^{m} |\Delta\left(\frac{a_{nk}}{u_k q_k}\right) Q_k^{s+1} B^{-1}|^{p_k} \le \sup_n \sum_k |\Delta\frac{a_{nk}}{u_k q_k} Q_k^{s+1} B^{-1}|^{P_k}$$

Letting $m, n \rightarrow \infty$, together with (3.1) and (3.5) give

$$\sum_{k} \left| \Delta \frac{\alpha_k}{u_k q_k} Q_k^{s+1} B^{-1} \right|^{P_k} < \infty$$
(3.6)

Also by letting $n \to \infty$, we have from (3.2) that

 $\left(\frac{a_{nk}}{u_k q_k} Q_k^{s+1} B^{-1}\right)^{p_k} \in \ell_{\infty}$, which leads together with (3.6) that

 $(\alpha_k) \in D_2(u, p, s)$. Thus the series $\sum_k \alpha_k x_k$ converges for every $x \in r^q(u, p, s)$.

Writing $a_{nk} - \alpha_k$ for all a_{nk} we have from (3.4)

$$\sum_{k=1}^{\infty} (a_{nk} - \alpha_k) x_k = \sum_{k=1}^{\infty} \Delta\left(\frac{a_{nk} - \alpha_k}{u_k q_k}\right) Q_k^{s+1} y_k \tag{3.7}$$

Comparing this with lemma (3.4) with $\beta_k = 0$, for all $k \in \mathbb{N}$.

We get the matrix $\left(\Delta\left(\frac{a_{nk}-\alpha_k}{u_kq_k}\right)Q_k^{s+1}\right)_{n,k\in\mathbb{N}} \in (\ell(p), c_0)$

Thus, by (3.7) we get

$$\lim_{n}\sum_{k}(a_{nk}-\alpha_{k})x_{k}=0$$
(3.8)

Now, by combining (3.8) with the above results on can see that $Ax \in cs$. Hence the proof.

Theorem 3.3 Let $1 < p_k \le H < \infty$, for every $k \in \mathbb{N}$. Then $A \in (r^q(u, p, s), c_0 s)$ if and only if conditions (3.1), (3.2) hold and (3.5) also holds with $\beta_k = 0$ for each $k \in \mathbb{N}$.

Proof. This may be proved using similar argument as in the above theorem (Theorem 3.2) and therefore omitted.

4. CONCLUSION

Recently, several authors defined and studied Riesz sequence space $r^q(u,p)$ of non absolute type. Furthermore, many generalizations of the above sequence space were introduced such as $r^q(u,p,s)$ and characterization of the classes $(r^q(u,p,s),\ell_{\infty}), (r^q(u,p,s),c)$ and $(r^q(u,p,s),c_0)$ were equally obtained by (Fazlur Rahman et al [9]). In this paper, we characterized the classes of the infinite matrices $(r^q(u,p,s),bs), (r^q(u,p,s),cs)$ and $(r^q(u,p,s),c_0s)$ as our main results. There is room for more characterizations.

REFERENCES

- [1] I. J Maddox, Space of strongly summable sequences, *Quart. J. Math. Oxford Ser. 18* (2), 1967, 345-355.
- [2] M. Mursaleen, Matrix transformations between some new sequence spaces, *Houston J. Math.*, 9 (4), 1983, 505-509.
- [3] H. Nakano, Modulated sequence spaces, *Proc. Japan Acad.*, 27, 1951, 508-512.
- [4] A. Wilansky, *Summability through functional analysis* (North-Holland Math. Studies, 85, 1984)

- [5] H. Stieglitz and H. Tietz, Matrix transformationen von folgenräumen eine ergebnisübersicht, Math. Z., 154, 1977, 1-16.
- [6] G. M. Petersen, Regulated Matrix transformations (McGraw-Hill, New York, 1966)
- [7] V. N. Mishra, H. H. Khan, I. A. Khan and L. N. Mishra, On the degree of approximation of signal of Lipschitz class by almost Riesz means of its Fourier series, *Journal of Classical Analysis*, 4 (1), 2014, 79-87.
- [8] N. A. Sheik and A. B. H. Ganie, A new paranormed sequence space and some matrix transformations, *Acta Math. Acad. Paedagogicae Nyiregyhaiensis*, 28, 2012, 47-58.
- [9] M. F. Rahman and A. B. M. Rezaul Karim, Generalized Riesz sequence space of non absolute Type and some matrix mapping, *Pure and Applied Mathematics Journal*, 4 (3), 2015, 90-95.
- [10] I. J. Maddox, Continuous and Köthe-Toeplitz duals of certain sequence spaces, Proc. Camb. Philo. Soc., 65, 1969, 431-435.