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ABSTRACT 

The main purpose of this paper is to characterize the classes 

 𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑏𝑠 ,  𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑐𝑠  𝑎𝑛𝑑 (𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑐0𝑠) of the infinite matrices, where 

𝑏𝑠, 𝑐𝑠 𝑎𝑛𝑑 𝑐0𝑠 denote the space of all bounded series, the space of all convergent series and the 

space of series converging to zero, respectively. 
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1. INTRODUCTION 

A sequence space is defined to be a linear space of real or complex sequences. 

Throughout the paper ℕ,ℝ  and ℂ denote the set of non negative integers, the set of real numbers 

and the set of complex numbers, respectively. Let 𝜔 denote  the space of all sequences (real or 

complex), ℓ∞  𝑎𝑛𝑑 𝑐, respectively denote the space of all bounded sequences and the space of all 

convergent sequences. A linear topological space X over the field of real numbers ℝ is said to be 

a paranormed space if there is a sub additive function 𝑕 ∶ 𝑋 → ℝ  such that 𝑕 𝜃 = 0, 𝑕 −𝑥 =

𝑕(𝑥) and scalar multiplication is continuous, that is ,  𝛼𝑛 − 𝛼 → 0 and 𝑕 𝑥𝑛 − 𝑥 →

0 imply 𝑕 𝛼𝑛𝑥𝑛 − 𝛼𝑥 → 0, as 𝑛 → ∞ for all 𝛼′𝑠 in ℝ and 𝑥′𝑠 in X, where 𝜃 is the zero vector 

in the linear space X. Assuming here and after that (𝑝𝑘) be a bounded sequence of strictly 

positive real numbers with sup𝑘 𝑝𝑘 = 𝐻 𝑎𝑛𝑑 𝑀 = max 1, 𝐻 . Then the linear space 

ℓ 𝑝 𝑎𝑛𝑑 ℓ∞(𝑝) were defined by Maddox [1], (see also [2], [3] and [4] ) as follows: 
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                      ℓ 𝑝 =   𝑥 =  𝑥𝑘 :  |𝑥𝑘𝑘 |𝑝𝑘 < ∞  with 0 < 𝑝𝑘 ≤ 𝐻 < ∞. 

ℓ∞ 𝑝 =   𝑥 =  𝑥𝑘 : sup
𝑘

|𝑥𝑘 |𝑝𝑘 < ∞    

which are complete spaces paranormed, respectively by 

 𝑔1 𝑥 = [  |𝑥𝑘𝑘 |𝑝𝑘 ]
1
𝑀          and         𝑔2 𝑥 = sup𝑘 |𝑥𝑘 |

𝑝𝑘
𝑀  iff inf𝑘 𝑝𝑘 > 0.  

We shall assume throughout that 𝑝𝑘
−1 + 𝑡𝑘

−1 = 1 and provided 1 < 𝑖𝑛𝑓𝑝𝑘 ≤ 𝐻 < ∞. 

In [5] Stieglitz and Tietz defined 

 𝑐𝑠 =   𝑥 =  𝑥𝑘 ∶   𝑥𝑘
𝑛
𝑘=1  ∈ 𝑐            (1.1)                                      

 𝑐0𝑠 = { 𝑥 =  𝑥𝑘 ∶   𝑥𝑘
𝑛
𝑘=1   ∈  𝑐0 }                            (1.2)                              

 𝑏𝑠 =   𝑥 =  𝑥𝑘 ∶    𝑥𝑘
𝑛
𝑘=1  ∈  ℓ∞                     (1.3) 

 

For the sequence spaces X and Y, define the set 

 

            𝑀 𝑋 , 𝑌 = { 𝑧 = (𝑧𝑘) ∈ 𝜔 ∶ 𝑥𝑧 = (𝑥𝑘𝑧𝑘) ∈ 𝑌, for all 𝑥 ∈ 𝑋}.        (1.4) 

With the notion of (1.4) the 𝛼−, 𝛽 − 𝑎𝑛𝑑 𝛾 − duals of a sequence space X, which are 

respectively denoted by 𝑋𝛼 , 𝑋𝛽  𝑎𝑛𝑑 𝑋𝛾  and are defined by  

  𝑋𝛼 = 𝑀 𝑋, ℓ1 , 𝑋
𝛽 = 𝑀 𝑋, 𝑐𝑠  𝑎𝑛𝑑 𝑋𝛾 = 𝑀(𝑋, 𝑏𝑠). 

If a sequence space X paranormed by h contains a sequence (𝑏𝑛) with the property that 

for every 𝑥 ∈ 𝑋, there is a unique sequence of scalars (𝛼𝑛) such that  

                                                    lim𝑛 𝑕(𝑥 − 𝛼𝑘𝑏𝑘
𝑛
𝑘=0 ) = 0.  

Then (𝑏𝑛) is called a Schauder basis or (briefly basis) for X. The series  𝛼𝑘𝑏𝑘𝑘  which has the 

sum x is then called the expansion of x with respect to (𝑏𝑛), written as 𝑥 =  𝛼𝑘𝑏𝑘𝑘 . 

Let X and Y be a two subsets of 𝜔. Let 𝐴 =  𝑎𝑛𝑘   be an infinite matrix of real or 

complex numbers 𝑎𝑛𝑘 , where 𝑛, 𝑘 ∈ ℕ. Then the matrix A defined the A-transformation from X 

into Y, if for every sequence 𝑥 = (𝑥𝑘) ∈ 𝑋. The sequence 𝐴𝑥 = (𝐴𝑥)𝑛 , the A-transform of x 

exists and is in Y, where = (𝐴𝑥)𝑛 =  𝑎𝑛𝑘𝑘 𝑥𝑘  . For simplicity of notation, here and what 

follows, the summation without limits runs from 0 to ∞. By (X, Y), we denote the class of all 

matrices. A sequence x is said to be A-summable to l if Ax converges to l which is called the A-

limit of x. 

For a sequence space X, the matrix domain 𝑋𝐴 of an infinite matrix A is defined as  

                                                𝑋𝐴 = { 𝑥 =  𝑥𝑘 ∶ (𝐴𝑥) ∈ 𝑋 }.                            (1.5)                                      

 



 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

International Research Journal of Mathematics, Engineering and IT (IRJMEIT) 

23 | P a g e  

2. SOME BASIC DEFINITIONS AND LEMMAS 

In this section we give some important definitions which shall be used in this work. 

Definition 2.1 Let 𝑞 = (𝑞𝑖) be a sequence of positive real numbers and let write  

𝑄𝑛 =  𝑞𝑖
𝑛
𝑖  for 𝑛 ∈ ℕ. Then the matrix 𝑅𝑞 = (𝑟𝑛𝑘

𝑞 ) of the Riesz mean (𝑅, 𝑞𝑛) is given by 

    𝑟𝑛𝑘
𝑞  =  

qk

Qk
                         if 0 ≤ k ≤ n

0,                                 if  k > 𝑛
                                               (2.1) 

The Riesz mean (𝑅, 𝑞𝑛) is regular if and only if 𝑄𝑛 → ∞, 𝑎𝑠 𝑛 → ∞. 

(See Petersen [6] and [7] ) 

Recently, the following Riesz sequence space was introduced. 

Definition 2.2 (Sheik and Ganie [8]) defined and studied the Riesz sequence space 𝑟𝑞(𝑢. 𝑝) of 

non –absolute type by 

  𝑟𝑞 𝑢. 𝑝 = { 𝑥 = (𝑥𝑘) ∈ 𝜔 ∶   |
1

𝑄𝑛

∞
𝑛=1  𝑢𝑘𝑞𝑘

𝑛
𝑘=1 𝑥𝑘 |𝑝𝑘 < ∞ }, where 0 < 𝑝𝑘 ≤ 𝐻 < ∞.  

Definition 2.3 (Fazlur Rahman and Rezaul Karim [9]) For 𝑠 ≥ 0, we define 

𝑟𝑞 𝑢, 𝑝, 𝑠 = { 𝑥 = (𝑥𝑘) ∈ 𝜔 ∶   |
1

𝑄𝑛
𝑠+1

∞
𝑛=1  𝑢𝑘𝑞𝑘

𝑛
𝑘=1 𝑥𝑘 |𝑝𝑘 < ∞ }, 

If s = 0, then 𝑟𝑞 𝑢, 𝑝, 𝑠  reduces to 𝑟𝑞(𝑢. 𝑝) which is defined and studied in [7]. 

Now the sequence 𝑦 = (𝑦𝑘) is defined by 

    𝑦𝑘 =
1

𝑄𝑘
𝑠+1  𝑢𝑗𝑞𝑗

𝑘
𝑗=1 𝑥𝑗                                                                 (2.2) 

Note the following inequality (see [10]), which will be used in this paper. 

For any integer E > 1 and any two complex numbers 𝑎 𝑎𝑛𝑑 𝑏 we have 

     𝑎. 𝑏 ≤ 𝐸( |𝑎|𝑡  𝐸−𝑡 + |𝑏|𝑝)                                                      (2.3) 

Lemma 2.1 ([9], Theorem 1.1)  

The Riesz sequence space 𝑟𝑞(𝑢. 𝑝, 𝑠) is a complete linear metric space paranormed by  

                                      𝑔 𝑥 = (  |
1

𝑄𝑛
𝑠+1

∞
𝑛=1  𝑢𝑘𝑞𝑘

𝑛
𝑘=1 𝑥𝑘 |𝑝𝑘)

1
𝑀 . 

Lemma 2.2 ([9], Theorem 2.1). Let 1 < 𝑝𝑘 ≤ 𝐻 < ∞, for every 𝑘 ∈  ℕ. 

Define the sets 𝐷1 𝑢, 𝑝, 𝑠 and 𝐷2 𝑢, 𝑝, 𝑠  as follows: 
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   𝐷1 𝑢, 𝑝, 𝑠 =  ⋃𝐸>1{ 𝑎 =  𝑎𝑘 ∈ 𝜔: sup𝑛∈ℱ  |  −1 𝑛−𝑘𝑛∈ℕ𝑘
𝑎𝑛

𝑢𝑛𝑞𝑛
𝑄𝑘
𝑠+1𝐸−1|𝑡𝑘 < ∞ }   (2.4) 

                   
𝐷2 𝑢, 𝑝, 𝑠 =  ⋂𝐸>1{ 𝑎 = (𝑎𝑘) ∈ 𝜔:  |∆(𝑘

𝑎𝑘

𝑢𝑘𝑘
)𝑄𝑘

𝑠+1𝐸−1|𝑡𝑘 < ∞ 

and ((
𝑎𝑘

𝑢𝑘𝑞𝑘
𝑄𝑘
𝑠+1𝐸−1)𝑡𝑘 ∈ ℓ∞}

           (2.5) 

Then,  

[𝑟𝑞 𝑢, 𝑝, 𝑠 ]𝛼 = 𝐷1 𝑢, 𝑝, 𝑠  and [𝑟𝑞 𝑢, 𝑝, 𝑠 ]𝛽 = [𝑟𝑞 𝑢, 𝑝, 𝑠 ]𝛾 = 𝐷2 𝑢, 𝑝, 𝑠  

Lemma 2.3 ([9], Theorem 2.2): Let 0 < 𝑝𝑘 ≤ 1. for every 𝑘 ∈  ℕ. Define 𝐷3 𝑢, 𝑝, 𝑠   and 

𝐷4 𝑢, 𝑝, 𝑠  as 

         𝐷3 𝑢, 𝑝, 𝑠 = { 𝑎 =  𝑎𝑘 ∈ 𝜔: sup
𝑛∈ℱ

sup
𝑘

|   −1 𝑛−𝑘𝑛∈ℕ
𝑎𝑛

𝑢𝑛𝑞𝑛
𝑄𝑘
𝑠+1𝐸−1|𝑝𝑘 < ∞ }             (2.6) 

         𝐷4 𝑢, 𝑝, 𝑠 =    
𝑎 =  𝑎𝑘 ∈ 𝜔: sup⁡|

𝑘
∆

𝑎𝑛

𝑢𝑛𝑞𝑛
𝑄𝑘
𝑠+1𝐸−1|𝑝𝑘 < ∞ 

𝑎𝑛𝑑 sup
𝑘

|
𝑎𝑛

𝑢𝑛𝑞𝑛
𝑄𝑘
𝑠+1𝐸−1|𝑝𝑘 < ∞ 

               (2.7) 

Then,  

  [𝑟𝑞 𝑢, 𝑝, 𝑠 ]𝛼 = 𝐷3 𝑢, 𝑝, 𝑠  𝑎𝑛𝑑 [𝑟𝑞 𝑢, 𝑝, 𝑠 ]𝛽 = [𝑟𝑞 𝑢, 𝑝, 𝑠 ]𝛾 = 𝐷4 𝑢, 𝑝, 𝑠 . 

Lemma 2.4 ([9], Theorem 3.1)   

(i) Let 1 < 𝑝𝑘 ≤ 𝐻 < ∞, for every 𝑘 ∈  ℕ. Then 𝐴 ∈ (𝑟𝑞 𝑢, 𝑝, 𝑠 , ℓ∞) if and only if there exists 

an integer E > 1 such that  

                                   𝑈 𝐸 = sup𝑛  |𝑘 ∆
𝑎𝑛𝑘

𝑢𝑘𝑞𝑘
𝑄𝑘
𝑠+1𝐸−1|𝑡𝑘 < ∞                                             (2.8) 

and 

                     (
𝑎𝑛𝑘

𝑢𝑘𝑞𝑘
𝑄𝑘
𝑠+1𝐸−1)𝑡𝑘 ∈ ℓ∞                                                           (2.9)    

(ii) Let 0 < 𝑝𝑘 ≤ 1, for every 𝑘 ∈  ℕ. Then 𝐴 ∈ (𝑟𝑞 𝑢, 𝑝, 𝑠 , ℓ∞) if and only if   

  sup⁡|
𝑛

∆
𝑎𝑛𝑘

𝑢𝑘𝑞𝑘
𝑄𝑘
𝑠+1𝐸−1|𝑝𝑘 < ∞                                                  (2.10) 

Lemma 2.5 ([9], Theorem 3.2). Let 1 < 𝑝𝑘 ≤ 𝐻 < ∞, for every 𝑘 ∈  ℕ. Then 𝐴 ∈ (𝑟𝑞 𝑢, 𝑝, 𝑠 ,

𝑐) if and only if conditions (2.8) and (2.9) hold, and there is a sequence of scalars (𝛼𝑘 ) such that 

    lim𝑛 ∆
𝑎𝑛

𝑢𝑛 𝑞𝑛
𝑄𝑘
𝑠+1 =  𝛽𝑘                                                             (2.11) 
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Lemma 2.6 ([9], Corollary 3.1). Let 1 < 𝑝𝑘 ≤ 𝐻 < ∞, for each 𝑘 ∈  ℕ. Then 

𝐴 ∈ (𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑐0) if and only if the conditions (2.8), (2.9) hold and (2.11) holds with 𝛽𝑘 = 0, 

for each 𝑘 ∈  ℕ. 

3. MAIN RESULTS 

In this section we characterize the matrix classes  𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑏𝑠 , 𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑐𝑠),  

and 𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑐0𝑠). We shall prove the following results. 

Theorem 3.1 (i) Let 1 < 𝑝𝑘 ≤ 𝐻 < ∞, for every 𝑘 ∈  ℕ. Then𝐴 ∈ (𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑏𝑠 ) if and only 

if  there exists an integer 𝐵 > 1 such that  

                                    sup𝑛  |𝑘 ∆
𝑎𝑛𝑘

𝑢𝑘𝑞𝑘
𝑄𝑘
𝑠+1𝐵−1|𝑡𝑘 < ∞, 𝑛 ∈  ℕ.                                          (3.1) 

and 

                                      sup⁡|
𝑘

𝑎𝑛𝑘

𝑢𝑘𝑞𝑘
𝑄𝑘
𝑠+1𝐵−1|𝑡𝑘 < ∞ , 𝑛 ∈  ℕ.                                                (3.2) 

(ii) Let  0 < 𝑝𝑘 ≤ 1, for every 𝑘 ∈  ℕ. Then 𝐴 ∈ (𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑏𝑠) if and only if 

    sup⁡|
𝑛

∆
𝑎𝑛𝑘

𝑢𝑘𝑞𝑘
𝑄𝑘
𝑠+1|𝑝𝑘 < ∞                                                         (3.3) 

Proof. Let us define the matrix 𝐸 = (𝑒𝑛𝑘 ) by 𝑒𝑛𝑘 = 𝑎(𝑛, 𝑘) for all 𝑛 ∈  ℕ, consider  now 

equality derived from the 𝑛;𝑚𝑡𝑕 partial sum of the series   𝑎𝑗𝑘
𝑚
𝑘

𝑛
𝑗 𝑥𝑘  as 𝑚 → ∞, 

     𝑎𝑗𝑘𝑘
𝑛
𝑗 𝑥𝑘 =  𝑒𝑛𝑘𝑘 𝑥𝑘  for all 𝑛, 𝑘 ∈  ℕ. 

Therefore , bearing in mind the fact that the space 𝑏𝑠 𝑎𝑛𝑑 ℓ∞  are linearly isomorphic, one can 

easily see that 𝐴𝑥 ∈ 𝑏𝑠 whenever 𝑥 ∈ 𝑟𝑞 𝑢, 𝑝, 𝑠  if and only if 𝐸𝑥 ∈ ℓ∞ , whenever 𝑥 ∈

𝑟𝑞 𝑢, 𝑝, 𝑠 . 

Moreover, let 𝐴 ∈ (𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑏𝑠). Then 𝐴𝑛 𝑥 =  𝑎𝑛𝑘𝑘 𝑥𝑘  exists for 𝑥 ∈ 𝑟𝑞 𝑢, 𝑝, 𝑠  and this 

implies that  𝑎𝑛𝑘  ∈ [𝑟𝑞 𝑢, 𝑝, 𝑠 ]𝛽  for every 𝑛, 𝑘 ∈  ℕ. So by lemma 2.1, the necessities of (3.1) 

and (3.2) hold. 

Sufficiency. Suppose the conditions (3.1) and (3.2) hold. 

For 𝑚, 𝑛 ∈  ℕ, consider the equation 

                                𝑎𝑛𝑘𝑥𝑘
𝑚
𝑘=1 =  ∆𝑚−1

𝑘=1  
𝑎𝑛𝑘

𝑢𝑘𝑞𝑘
 𝑄𝑘

𝑠+1𝑦𝑘 +
𝑎𝑛𝑚

𝑢𝑚 𝑞𝑚
𝑄𝑚
𝑠+1𝑦𝑚                            (3.3) 

when 𝑚 → ∞, then from (3.3) we have 

    𝑎𝑛𝑘𝑥𝑘
∞
𝑘=1 =  ∆∞

𝑘=1  
𝑎𝑛𝑘

𝑢𝑘𝑞𝑘
 𝑄𝑘

𝑠+1𝑦𝑘                                                   (3.4) 
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Using  inequality (2.3) and (3.4) 

sup
𝑛

| 𝑎𝑛𝑘𝑥𝑘 |

∞

𝑘=1

≤ sup
𝑛

 |∆

∞

𝑘=1

 
𝑎𝑛𝑘
𝑢𝑘𝑞𝑘

 𝑄𝑘
𝑠+1||𝑦𝑘 | 

                            ≤ 𝐵 sup𝑛[ |∆∞
𝑘=1  

𝑎𝑛𝑘

𝑢𝑘𝑞𝑘
 𝑄𝑘

𝑠+1|𝑡𝑘𝐵−𝑡𝑘 +  |𝑦𝑘𝑘 |𝑝𝑘 ] 

                              ≤ 𝐵[𝑈 𝐵 + 𝑔1
𝑀(𝑦) < ∞ 

      This shows that 𝐴 ∈ (𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑏𝑠). 

(ii) The proof of the second part is similar to that of the part ( i ). Therefore it is omitted. 

Theorem 3.2: Let 1 < 𝑝𝑘 ≤ 𝐻 < ∞, for every 𝑘 ∈  ℕ. Then 𝐴 ∈ (𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑐𝑠) if and only if 

(3.1), (3.2) hold and there is a sequence of scalars (𝛼𝑘) such that 

                                   lim𝑛 ∆
𝑎𝑛−𝛼𝑘

𝑢𝑘𝑞𝑘
𝑄𝑘
𝑠+1 =  𝛽𝑘  for every 𝑛. 𝑘 ∈  ℕ.                                      (3.5)                                

Proof. Necessity Suppose 𝐴 ∈ (𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑐𝑠) and 1 < 𝑝𝑘 ≤ 𝐻 < ∞, Then the A-

transformation of 𝑟𝑞 𝑢, 𝑝, 𝑠  exists and belong to cs. Hence,  𝑎𝑛𝑘  ∈ [𝑟𝑞 𝑢, 𝑝, 𝑠 ]𝛽 . By Lemma ( 

2.1), the necessities of (3.1) and (3.2) hold. For the necessity of condition (3.5), we take for each 

fixed k, a sequence 𝑥(𝑘) =  𝑥𝑛
 𝑘  𝑞   𝑖𝑛 𝑟𝑞 𝑢, 𝑝, 𝑠  with 

                                   𝑥𝑛
 𝑘  𝑞 =  

(−)𝑛−𝑘
𝑄𝑘
𝑠+1

𝑢𝑛𝑞𝑛
,            if  𝑘 ≤ 𝑛 ≤ 𝑘 + 1

0 ,                 if 0 ≤ 𝑛 < 𝑘 𝑜𝑟 𝑛 > 𝑘 + 1

                

Then for each 𝑘 ∈  ℕ, we have 𝐴𝑥𝑘 ∈ 𝑐𝑠, which shows that  

(∆
𝑎𝑛−𝛼𝑘

𝑢𝑘𝑞𝑘
𝑄𝑘
𝑠+1) ∈ 𝑐. This proves the necessity of the condition (3.5). 

Sufficiency. Suppose that the conditions (3.1), (3.2) and (3.5) hold. Then for 𝑥 ∈ 𝑟𝑞 𝑢, 𝑝, 𝑠 , we 

have  𝑎𝑛𝑘  ∈ [𝑟𝑞 𝑢, 𝑝, 𝑠 ]𝛽  for each n and so 𝐴𝑥 =  𝑎𝑛𝑘𝑘 𝑥𝑘  exists. 

For every 𝑚, 𝑛 ∈  ℕ, we have  

 |∆

𝑚

𝑘=1

 
𝑎𝑛𝑘
𝑢𝑘𝑞𝑘

 𝑄𝑘
𝑠+1𝐵−1|𝑝𝑘 ≤ sup

𝑛
 |

𝑘

∆
𝑎𝑛𝑘
𝑢𝑘𝑞𝑘

𝑄𝑘
𝑠+1𝐵−1|𝑃𝑘  

Letting 𝑚, 𝑛 → ∞, together with (3.1) and (3.5) give 

         .  |𝑘 ∆
𝛼𝑘

𝑢𝑘𝑞𝑘
𝑄𝑘
𝑠+1𝐵−1|𝑃𝑘 < ∞                                               (3.6) 

Also by letting 𝑛 → ∞, we have from (3.2) that  
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(
𝑎𝑛𝑘

𝑢𝑘𝑞𝑘
𝑄𝑘
𝑠+1𝐵−1)𝑝𝑘 ∈ ℓ∞ , which leads together with (3.6) that 

(𝛼𝑘) ∈ 𝐷2(𝑢, 𝑝, 𝑠). Thus the series  𝛼𝑘𝑥𝑘𝑘  converges for every 𝑥 ∈ 𝑟𝑞 𝑢, 𝑝, 𝑠 . 

Writing  𝑎𝑛𝑘 − 𝛼𝑘  for all 𝑎𝑛𝑘  we have from (3.4) 

    (𝑎𝑛𝑘 − 𝛼𝑘)𝑥𝑘
∞
𝑘=1 =  ∆∞

𝑘=1  
𝑎𝑛𝑘 −𝛼𝑘

𝑢𝑘𝑞𝑘
 𝑄𝑘

𝑠+1𝑦𝑘                                     (3.7) 

Comparing this with lemma (3.4) with 𝛽𝑘 = 0, for all 𝑘 ∈  ℕ. 

We get the matrix (∆  
𝑎𝑛𝑘 −𝛼𝑘

𝑢𝑘𝑞𝑘
 𝑄𝑘

𝑠+1)𝑛,𝑘∈ℕ ∈ (ℓ 𝑝 , 𝑐0)  

Thus, by (3.7) we get  

    lim𝑛  (𝑎𝑛𝑘𝑘 − 𝛼𝑘)𝑥𝑘 = 0                                               (3.8) 

Now, by combining (3.8) with the above results on can see that 𝐴𝑥 ∈ 𝑐𝑠. Hence the proof. 

Theorem 3.3 Let 1 < 𝑝𝑘 ≤ 𝐻 < ∞, for every 𝑘 ∈  ℕ. Then 𝐴 ∈  𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑐0𝑠  if and only if 

conditions (3.1), (3.2) hold and (3.5) also holds with 𝛽𝑘 = 0 for each 𝑘 ∈  ℕ. 

Proof. This may be proved using similar argument as in the above theorem (Theorem 3.2) and 

therefore omitted. 

4. CONCLUSION  

Recently, several authors defined and studied Riesz sequence space 𝑟𝑞 𝑢, 𝑝  of non absolute 

type. Furthermore, many generalizations of the above sequence space were introduced such as 

𝑟𝑞 𝑢, 𝑝, 𝑠  and characterization of the classes (𝑟𝑞 𝑢, 𝑝, 𝑠 , ℓ∞), (𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑐) and 

(𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑐0) were equally obtained by (Fazlur Rahman et al [9]). In this paper , we 

characterized the classes of the infinite matrices (𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑏𝑠), (𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑐𝑠) and 

(𝑟𝑞 𝑢, 𝑝, 𝑠 , 𝑐0𝑠) as our main results. There is room for more characterizations. 

REFERENCES 

[1]    I. J Maddox, Space of strongly summable sequences, Quart. J. Math. Oxford Ser. 18 (2),   

1967, 345-355. 

[2]   M. Mursaleen, Matrix transformations between some new sequence spaces, Houston J. 

Math., 9 (4), 1983, 505-509. 

[3]     H. Nakano, Modulated sequence spaces, Proc. Japan Acad., 27, 1951, 508-512. 

[4]    A. Wilansky, Summability through functional analysis (North-Holland Math. Studies, 85, 

1984) 



 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

International Research Journal of Mathematics, Engineering and IT (IRJMEIT) 

28 | P a g e  

  [5]  H. Stieglitz and H. Tietz, Matrix transformationen von folgenrӓumen eine 

ergebnisübersicht, Math. Z., 154, 1977, 1-16. 

[6]     G. M. Petersen, Regulated Matrix transformations (McGraw-Hill, New York, 1966) 

[7]     V. N. Mishra, H. H. Khan, I. A. Khan and L. N. Mishra, On the degree of approximation of 

signal of Lipschitz class by almost Riesz means of its Fourier series, Journal of Classical 

Analysis,4 (1), 2014, 79-87. 

[8]   N. A. Sheik and A. B. H. Ganie, A new paranormed sequence space and some matrix  

transformations, Acta Math. Acad. Paedagogicae Nyiregyhaiensis, 28, 2012, 47-58. 

[9]   M. F. Rahman and A. B. M. Rezaul Karim, Generalized Riesz sequence space of non 

absolute Type and some matrix mapping, Pure and Applied Mathematics Journal, 4 (3), 

2015, 90-95. 

[10]  I. J. Maddox, Continuous and Kӧthe-Toeplitz duals of certain sequence spaces, Proc. 

Camb. Philo. Soc., 65, 1969, 431-435. 

 

 

 

 


