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ABSTRACT

The concept of Skolem difference mean labelling was introduced by K. Murugan and
A. Subramanian[2]. The concept of Fibonacci labelling was introduced by David W. Bange
and Anthony E. Barkauskas[1] in the form Fibonacci graceful. This motivates us to
introduce skolem difference Fibonacci mean labelling and is defined as follows: “A graph G
with p vertices and q edges is said to have skolem difference Fibonacci mean labelling if it is
possible to label the vertices x€ V with distinct elements f(x) from the set {1,2,...,Fp+q} in

if |f(w) — f(v)| is even and

such a way that the edge e = uv is labelled With|—f(u)2_f(”)

w if |f(w) — f(v)| is odd and the resulting edge labels are distinct and are from
{F1, F2,...,Fq}. A graph that admits Skolem difference Fibonacci mean labelling is called a
Skolem difference Fibonacci mean graph”. In this paper, we prove that caterpillar, S,, ,,
olive tree, K1, @K;, the graph obtained by identifying vi, with V1 of Ky ,,, the graph
obtained by joining two pendant vertices to each of the pendant vertices of Ky , of graphs are
Skolem difference Fibonacci mean graphs.

Keywords: Skolem difference mean labelling, Fibonacci labelling, Skolem difference
Fibonacci mean labelling

1. Introduction

A graph G with p vertices and g edges is said to have Skolem difference Fibonacci
mean labelling if it is possible to label the vertices xe V with distinct elements f(x) from the

T it 1) — )

set {1,2,...,Fp+q} insuch a way that the edge e = uv is labelled with

is even and w if |f(u) — f(v)]| is odd and the resulting edge labels are distinct and
are from {F1, F,...,Fq}. A graph that admits Skolem difference Fibonacci mean labelling is
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called a Skolem difference Fibonacci mean graph. It was found that standard graphs [7],
H- class of graphs [8], some special class of graphs [9] and path related graphs [10] are
Skolem difference Fibonacci mean graphs.

2. PRELIMINARIES

In this section, some basic definitions and preliminary ideas are given which is useful
for proving theorems.

2.1 Definition [3]:

A caterpillar is a tree with the property that the removal of its end points or pendant
vertices (vertices of degree 1) results in a path.

2.2 Definition [3]:
Smn denotes a star with n spokes in which each spoke is path of length m.
2.3 Definition [3]:

Let O, be the olive tree having n paths of length 1, 2,..., n adjoined at one vertex Vy.
Let Vo, Vi1, Vi2,..., Vin, V21, V22,..., Vo(n-1),..., V1 D€ the vertices of O,,.

2.4 Definition [3]:

The corona G;© G, of two graphs G; and G, is defined as the graph G
obtained by taking one copy of G; (which has p; points) and p; copies of G, and then joining
the i™ point of G, to every point in the i copy of G,.

3. Skolem difference Fibonacci mean labelling of some special class of trees
3.1 Theorem

The caterpillar S(X4, X5, ..., X;,) is skolem difference Fibonacci mean graph for all
n>2.

Proof:
Let G be the caterpillarS (X1, X5, ..., X,,).
LetV(G)={vi/1<i<n} U{ujyl1<i<n, 1 <j<x}
E (G) = {vivis1/1 <i<n-1}U {viuiyl1 <i<n, 1 <j<xi}
Then |V(G)| = X1 + X, + --+X,, + nand
E(G)| =X, + X, ++X, +n—1
Letf: V (G) — {1, 2,..., Fa(x, +x,4-+x,+n)—1 } b€ defined as follows

f(vy) =1
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f(vi)= ZFZ;{_:llxk‘l'(i—l) + f(v;_1),2<i<n
f(uy) =2F + f(v1), 1<j<xs

P ) = 2F 51 x4+

+f(),2<i<n, I <j<x;
f+(E) = {f(vivis1)/1 <i<n-1} U {f(viujj)/1 <i<n, 1 <j<x}

= {f(v1va), f(vava),....f(Va-1vn)} U {f(viU11), f(ViU12),....F(ViUsxa), f(vau21),
f(VaUz2),...,fF(VaUax2),...,F(Valna), fF(VaUn2),...,fF(Valnxn) }

={ fvi))—f(v2)| | fva)—f(v3) f(vn—1)—f(Vn) U { f(V1)—f(u11)| f(V1)—f(u12)|
2 ) 2 L | 2 2 ) 2 1"
fvi)—f(uix)| | fv2)—f(uz1)| | f(v2)—f(uzz) f(v2)—f(uzx,) f(vn)—fung)| [fn)—f(un2)
2 ) 2 ) 2 JERRT! 2 yerey 2 ’ 2 yreny
fvn)—f(upx,)
2 }
_ |f61D)=2Fxq41—f(v1)| |f(v2)—2Fx, +x,+2—f(v2) f(vn-1)—2Fx{4+Xp++Xp_1+n-1—f(Vn—1)
=1{ 2 ' 2 e 2 Py
{ f(Vl)—ZFl—f(Vl) f(Vl)—ZFZ—f(V1) f(Vl)_prl_f(Vl) f(VZ)_ZFX1+2_f(V2)
2 ) 2 PR | 2 ) 2 )
f(v2)—2Fx, +3—f(v2) f(v2)—2Fxq +x,+1—f(v2) f(vn)—2Fx  +Xp 44Xy 140 —f(Vn)
2 IEREY] 2 yerey 2 )
f(vn)—2Fx{ +Xg++Xpy 1 +n+1—f(Vn) f(vn)—2Fx| +Xg+-4+Xp 1 +Xp +n—1—F(Vn) }
> yeres >

= {FX1+].I FX1+X2+2!'"! FX1+X2+"'+XH_1+II—11 Fl’ FZ""’ Fxl’ FX1+2’ FX1+3’

HL FX1+X2+17"'7 FX1+X2+"'+XH_1+H1 FX1+X2+“'+XH_1+H+1P"! FX1+X2+"'+XH_1+XH+H—1}

:{Fl’ FZ!"'! FX11 FX1+11 FX1+21 FX1+31 T FX1+X2+11 FX1+X2+21"'1 FX1+X2+---+XH_1+n—1!

FX1+X2+"'+XH_1+H7 FX1+X2+'“+XH_1+H+1V"! FX1+X2+“'+Xn_1+Xn+n—1}
={F1, F2,oy Fx,4xp 44X 1 +Xn +n—1}
Thus, the induced edge labels are distinct.

Hence, the caterpillar S(X4, X5, ..., X,,) is skolem difference Fibonacci mean graph for
alln>2.

3.2 Example:

The Skolem difference Fibonacci mean labelling of the caterpillar S (5,3,6) is
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Figurel

3.3 Corollary

When x; =m, 1 <i<n, the graph P, ® Km is skolem difference Fibonacci mean
graph foralln>2and m> 1.

3.4 Example:

The Skolem difference Fibonacci mean labelling of P;® K4 is

485 661 949 1415

Figure 2

3.5 Corollary When m =1, the graph P, ® K is called a comb. The comb is skolem
difference Fibonacci mean graph.

3.6 Example:

The Skolem difference Fibonacci mean labelling of Ps © K; is
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3.7 Definition:

The graph Py.1(1, 2,..., n) is a graph obtained from a path of vertices v, v»,...,v, having
the path length n-1 by joining i pendant vertices at each of its vertices.

3.8 Corollary

The graph Py.1(1, 2,..., n) is Skolem difference Fibonacci mean graph.

3.9 Example:

The Skolem difference Fibonacci mean labelling of the graph P4(1, 2, 3, 4, 5) is

309 429 597 885

80", 144 1233

377
! 2 8 21 55
131
1 13/ 2 4
; 47 63 89
Figure 4

3.10 Corollary

Let the path P, has Skolem difference Fibonacci mean labelling f. Then the twig
graph G obtained from the path P, by attaching exactly two pendant edges to each internal
vertex of the path is also Skolem difference Fibonacci mean graph.

Proof:

Note that G = S(Xy, X5, ..., X—2), Where X; = 4, 1 <i<n-2.
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Hence, G is Skolem difference Fibonacci mean graph.
3.11 Example:

The Skolem difference Fibonacci mean labelling of the graph twig of Ps is

32 52 84
Q 0
13 21 34
14 1 6 2 104 3 16 | 5 o 26
O o
116 188 304
Figure 5

3.12 Theorem

Sm.n 18 a skolem difference Fibonacci mean graph for all m, n > 2.
Proof:

LetV (Spn)={u,Vij/1<i<mand1<j<n}

E(Smn) ={uvy/ 1<j<m} U{VijV )/l <i<m-land 1 <j<n}

Then [V(Spn)| = mn+Land |E(S,,,)| =mn

Let f: V — {1,2,...,Fomn+1} be defined as follows

f(u=1

f(vy)=2F+1,1<j<n

f(vij) = 2FGayn+ (v, 2<i<mand I <j<n
f(E) ={f(uvy)/ 1 <j<m}uU{f(VijV s1)) /l <i<m-land 1 <j<n}

= {f(UVll), f(UVlz),..., f(UVln), f(V11V21), f(V21V31),..., f(V(m.1)1Vm1),
f(V12V22),f(V22V32),...,f(V(m.l)Qsz),..., f(V]_nVZn), f(VznV3n),..., f(V(m.l)n an)}

fu)—f(v11)| | f)—f(vi2) f)~f(vin)| | fvi)=f20)| |fva1)—f(v31)

={

> > > > > yeees
f(v(m-1)1)~f(m1) f(V12)—f(V22)| f(sz)—f(V32)| f(V(m-1)2)—f(vm2) f(v1n)—f(V2n)
2 ) 2 ) 2 1" 2 1" " 2 )
f(van)—f(v3n) £(v e —1yn) ~F(Vmn ) }
> ey >
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_ {|1—2F1—1 |1—2F2—1| 1=2Fp—1| [f(v11)=2Fn+1—f(v1D)| [f(v21)—2F2n+1—f(v21)
- ] l ) l ’ yrry
2 2 2 2
£(v(m-1)1)=2F (m —1)n+1~fV(m-1)1) f(V12)—2Fn+2—f(V12)| f(sz)—2F2n+2—f(V22)|
2 1 2 b 2 PR |
f(v(m-1)2)=2F (m —1)n+2—F(V (m -1)2) f(v1n)—2Fon —f(v1n)| [f(v2n)—2F3,—f(vop)
2 JERRT! 2 ) 2 1erey

f(V(m —1)n)_2F(m —Dn+n ~f(V(@m-1)n)
2

}

= {F1, Fo,..., Fn, Fos1, Fonetseer, Fmonynes, Frs2, Foneoseo s Fmotyne2,.,Fon, Fan,.., Fin}
= {F1, Fa,..., Fn, Fns, Frso, oo, Fon, Fonet, Foneasee, Fangee, Fmotyness Fmegne2,e.., Fin}
={Fy, Fz,..., Fmn}

Thus, the induced edge labels are distinct and are F1, F,..., Fmn.

Hence, S, , is a skolem difference Fibonacci mean graph for all m, n > 2.

3.13 Example:

The Skolem difference Fibonacci mean labelling of the graph S3 4 is

g 19 ss 129
O O
13 - 89 209
21 49 144 337
34 ?09 233 535
Figure 6

3.14 Theorem

The olive tree 0, is a skolem difference Fibonacci mean graph.

Proof:

Let O, be the olive tree having n paths of length 1, 2,..., n adjoined at one vertex Vy.
Let Vo, Vi1, Viz,..., Vin, Vo1, V22,..., Vo(n-1),..., V1 D€ the vertices of O,,.

Let E (0,) ={vovi/ 1 i<n} U {vjjVij+/ 1 <i<n-land 1 <j<(n-i)}

nn+1)

Then [V(0,)] =222 + 1 and |E(0,)] ==
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Let f: V (G) — {1.2,....Fnn+1)+1} be defined as follows
f(vo) =1
f(vir) =2F+1,1<i<n

f (Vij) = ZF(/ e (j—1)2(j—2) iy +f (Vi(j-l)), 2 Sj <npand 1 <i< n-(j-l)

f(E) ={f (vovir)/ 1 <i<n}u {f(vjj Vigep)/ 1 <i<n-land 1 <j<(n-i)}

= {f(vov1a), f(Vovar),..., f(Vova1)} U {f(V11vi2), F(V12Vi3),..., F(Vi-1)Van), F(V21v22),
f(v22V23),..., F(Von-2)Vo-1))s--r F(V(n-11V(n-2)2) }

f+(E) ={ f(VO);f(Vll) , f(Vo);f(V21)|,m, f(Vo)—zf(Vm) Yu{ f(V11)2—f(V12)|’
f(v12)—f(v13) f(vigm-0)=f@1n)| [fv2)—f(va2)| |fv22)—f(vas)
2 ey 2 ) 2 i) 2 vy
f(v2(n-2))—f(V2n-1)) f(v(n-11)—fF(V(n-1)2) }
2 B 2

_ 1—2F1—1 1—2F2—1 1_2Fn_1 f(Vll)—ZFn+1—f(V11)|

_{| 2 || 2 || 2 |}U{ 2 :
f(V12)—2an—f(V1z)| f(Vl(n—l))_ZFn(n_l)_(n—l)z(n—2)+l_f(Vl(n—l))

2 L | 2 )

f(vom—-2))—2F —f(vam-2))
£(va1)—2F 42—f(v21) =2) n=2)

2

f(v22)—2F2n+1—f(v22)
2

n(n —2)—(n_2)zﬁ+2

2

fVa-11)2Fh4m-»—fvm-1)1) |}
2

= {Fl1 FZ;"'; Fn} U {Fn+1, F2n1---1 Fn(n2+1)a Fn+21 F2n+1,---, Fn(n2+1)_11"'1 an-l}

= {Fl1 FZ;"'; Fm Fn+1, Fn+21---1 an-la ana F2n+11---1 Fn(n2+1) 1’ Fn(n2+l)}

= {Fl, Fz,..., Fn(n2+l)}
Thus, the induced edge labels are distinct and areF4, Fo,..., Fan+1) .
2

Hence, the olive tree 0, is a skolem difference Fibonacci mean graph.
3.15 Example:

Skolem difference Fibonacci mean labelling of the graph 0, is
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0
13 31 55 141
{0 0
21 49
0
Figure 7

3.16 Theorem

The graph K; , © K; is skolem difference Fibonacci mean graph for all n > 1.
Proof:

LetV (K, ©Ky)={u, uj, v, vi/1<i<n}

E (K1, © Ky) ={uv, uuj, uvi /1 <i<n}

Then [V(Ky, ® Ky)|=2n+2and |E(Ky, @ Ky)|=2n+1

Let f: V — {1,2,...,Fan+3} be defined as follows

fu=1

f(u)=2F+1,1<i<n

f (v) = 2Fn1+f(U)

f (Vi) = 2Fqsi+f(ui), 1 <i<n
f'(E) = { f(uv), f(uu), f(uivi) /1 <i<n}

= {f(uv), f(uuy), f(uuy), ..., f(uuy), f(ugvy), f(uzvo), ..., F(unvn)}

={ f—fW)| | fw—f)| |fl)—f(uz) f—fun)| | fu)—fv)| |fw2)—f(vz)
2 1 2 ’ 2 greey 2 ) 2 ’ 2 greey

fuy)—f(vp)
—}

_ { f(u)—2F2n+1—f(u) |1—2F1—1 |1—2F2—1| |1—2Fn—1| f(ul)—ZFn_,_l—f(ul)

- 2 1 2 1 2 3 vy 2 ’ 2 ’
f(uz)—2Fn42—f(uz) fCun)—2F2n —f(upn) }

2 guaay 2

= {ron+1, F1, Fo,..,Fn, Fos1, Freo,. Fon}
= {Fl, F2, ceny F2n+1}

Thus, the induced edge labels are distinct and are F, Fa,..., Fon+1.
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Hence, the graph K; , © K is Skolem difference Fibonacci mean graph for alln > 1.

3.17 Example:

The Skolem difference Fibonacci mean labelling of the graph K; , © K; is

th
th
sk
=]
Lh
[S]
&a
Lid
[

111 g

Figure 8

3.18 Theorem

Let Gi = Ky for 1 <1 <m with vertex set V (G) = {vi, Vij/ | <i<mand 1 <j<n }.
Let G be the graph obtained by identifying vi, with V(.1 for 1 <i<m-1 then G is Skolem
difference Fibonacci mean graph for all n and m.

Proof:

LetV (G)={vj Vvi/ 1 <i<mand 1 <j<n} and
E(G)={vivi/1<i<mand1<j<n} and
Vin =Vi+p1 for 1 <1<m-1

Then |V(G)| =mn+1land |E(G)| =mn

Letf: V — {1,2,...,Fomn+1} be defined as follows

f(vi) =1

f (Vi) = 2Fgyynert F(V(iyn), 2<i<m

f(vy) =2F+1,1<j<n

f (Vi) = f(V(i-n), 2<i<m

f(Vij) = 2FG-ynejHf(Vi),2<i<mand 2<j<n

f(vin) = f(v21), f(van) = f(v31),..., F(V(m-2)n) = F(Vin1)
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f(E) ={f(vivj)/ 1<i<mand 1<j<n}

= {f(V1V11), f(V1V12),..., f(Vj_Vj_n), f(V2V21), f(Vszz),..., f(VzVZn),..., f(Vmel), f(Vmez),...,
f(VmVmn) }

_ ol fvD)=fvi)| | fv)—f(vi2) fv)—f(vin)| | fG2)—fvar)| |fv2)—f(va2)

=1 2 |’ 2 |""’ 2 : 2 |’ 2 |""’
f(v2)—f(van) fvm)—f(vm 1)| fvm)—f(m 2)| fvm)—f(Vmn ) }

. ey > , > ey .

_ 1—2F1—1 1—2F2—1 1_2Fn_1 ZFn+1+f(V1n)—f(V1n) f(Vz)—ZFn+2—f(V2)

_{| 2 | | 2 | ’ | 2 | | 2 : 2
f(v2)—2Fp, —f(v2) |2F(m—1)n+1+f(V(m—1)n)—f(V(m—1)n) f(Vm)—ZF(m—l)n+2—f(Vm)|

2 ! 2 ! 2 e
fOvm)—2Fm—1n+n —f(Vm
(vm)—2F 21) +n—f( )|}

= {F1, Fa,..., Fn, Fas, Frsz, o, Fonyeess Fmennet, Fm-yne2, .o Fm-nynen}t

={Fu, Fa,..., Fn, Fns, Frs2, oo, Fonyeess Fmennet, Fm-ne2,...s Fn}

={Fy, Fo,..., Fmn}

Thus, the induced edge labels are distinct and are F1, F,..., Fmn.

Hence, f is a Skolem difference Fibonacci mean labelling of the graph G.
3.19 Example:

Skolem difference Fibonacci mean labelling of the graph obtained by identifying vin
with V(i+1)1 for 1 <i<m-1 for K1’6 is

7 11 179 257 3260 4480

5 17 137 357 2506 6454

v]
3\ /5 3 89 98 597
) 34 44 61 584

30 y 0 4 0 ., 09643

1 1 13 27 21 69 233 532 377 1286 4181

Figure 9

3.20 Theorem

Let G be the graph obtained by joining two pendant vertices to each of the pendant
vertices of Ky . Then G is Skolem difference Fibonacci mean graph for all n > 1.
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Proof:
Let V (G) = {u, uj, ui*, ui/ 1 <i<n}
E (G) = {uu;, uiti, uiu*/1 <i<n}
Letf: V (G) — {1,2,...,Fsn+1} be defined as follows
fuy=1
f(u)=2F+1,1<i<n
f (Ui') = 2FnsiayHf(Ui), 1 <i<n
f(ui'") = 2Fnez+f(Ui), 1 <i<n
Let f* be the induced edge labelling of f. Then
f* (E) = { f(uuy), f(uiui'), f(uiu™)y/1 <i<n}
= {f(uuy), f(uuy),..., fuun), fuzus), Fuzuz))...., fFUnun®), Fugus™), fuouz™), ... f(uaun'?) 3

S HORICH RRONICY f(u)—f(un) f(ul)—f(u11)| f(uz)—f(u21)| f(un)—f(un1)|
2 ) 2 PR | 2 i) 2 i) 2 PR | 2 )
f(ul)—f(u111)| f(uz)—f(u211)| f(un)—f(un“)|}
> , > yeeny >
_ |1-2F1-1] |1-2F,-1 1-2Fp—1| [|f(u1)—2Fy4+1—f(uy)
B {| | | 2 | ' 2 | 2 :
f(up)—2F,3—f(u) f(un)—2F3n_1—f(uy)| [fCu1)—2F,42—f(uq)
2 LR | 2 ) 2 )
f(uz)_ZFn+4_f(U2) f(un)_2F3n_f(un) }
2 e 2
= {FL F2| ey Fn; Fn+11 Fn+31 ey F3n-l, Fn+2, Fn+41 ey F3n}
= {FL F2| ey F3n}

Thus, the induced edge labels are distinct and are F1, F,..., Fan.
Hence, the graph is Skolem difference Fibonacci mean graph for all n > 1.

3.21 Example:

The Skolem difference Fibonacci mean labelling of the graph obtained from Kj 3 is
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Figure 10
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