

ON NANO (1,2)* GENERALIZED-SEMI CLOSED SETS IN NANO BITOPOLOGICAL SPACES

K.Bhuvaneswari^[1] And J.Sheeba Priyadharshini^[2]

^[1] Associate Professor, Department of Mathematics, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India.

^[2] Research Scholar, Department of Mathematics, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India.

ABSTRACT

The purpose of this paper is to define and study a new class of sets called Nano $(1,2)^*$ generalized-semi closed sets in nano bitopological spaces. Basic properties of nano $(1,2)^*$ generalized semi closed sets are analyzed. Also the new Characterization on Nano $(1,2)^*$ generalized-semi spaces are introduced and their relation with already existing well known spaces are also investigated.

KEYWORDS: Nano (1,2)* Generalized-semi Closed sets, nano (1.2)* generalized semi- T_0 , nano (1,2)* generalized semi- T_1 .

1.INTRODUCTION

In 1970, Levine[13] introduced the concept of generalized closed sets as a generalization of closed sets in topological spaces. While in 1987, P.Bhattacharyya et.al.,[2] have introduced the notion of semi generalized closed sets in topological spaces. In 1990, S.P.Arya et.al.,[1] have introduced the concept of generalized semi closed sets. In 1975, S.N.Maheshwari et al.,[14] have defined the concepts of semi separation axioms. The notion of nano topology was introduced by Lellis Thivagar[7]. In 1963, J.C.Kelly[9] initiated the study of bitopological spaces. Mean while in 1987, Fukutake[6] introduced generalized closed sets and pairwise generalized closure operator in bitopological spaces. In 1989,

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

Fukutake [7] introduced semi open sets in bitopological spaces. In 2014 K.Bhuvaneswari et al.,[4] have introduced the notion of nano semi generalized and generalized semi closed sets in nano topological space . In this paper, the concept of new class of sets on nano bitotpological spaces called nano $(1,2)^*$ generalized semi closed sets and the characterization of nano $(1,2)^*$ generalized semi spaces are introduced. Also study the relation of these new sets with the existing sets.

2.PRELIMINARIES

Definition:2.1 [12] A subset A of a topological space (X, τ) is called a semi open set if $A \subseteq cl[Int(A)]$. The complement of a semi open set of a space X is called semi closed set in X.

Definition:2.2 [2] A semi-closure of a subset A of X is the intersection of all semi closed sets that contains A and it is denoted by scl(A).

Definition:2.3 [2] The union of all semi open subsets of X contained in A is called semi-interior of A and it is denoted by sInt(A).

Definition:2.4 [2] A subset A of (X, τ) is called a generalized semi closed set (briefly gs closed) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition:2.5 [8] A space (X, τ) is called T_0 space, if and only if, each pair of distinct points x, y of X, there exist a open set containing one but not the other.

Definition:2.6 [8] A space (X, τ) is called T_1 space, if and only if, each pair of distinct points x, y of X, there exists a pair of open sets, one containing x but not y, and the other containing y but not x.

Definition:2.7 [14] A space (X, τ) is called semi - T_0 (briefly written as s- T_0), if and only if, each pair of distinct points x, y of X, there exist a semi open set containing one but not the other

Definition:2.8 [14] A space (X, τ) is called semi- T_1 (briefly written as s- T_1), if and only if, each pair of distinct points x, y of X, there exists a pair of semi open sets, one containing x but not y and the other containing y but not x.

Definition:2.9 [11] If $(U, \mathcal{T}_R(X))$ is a nano topological space with respect to X where $X \subseteq U$ and if $A \subseteq U$, then

• The nano interior of the set A is defined as the union of all nano open subsets contained in A and is denoted by NInt(A). NInt(A) is the largest nano open subset of A.

• The nano closure of the set A is defined as the intersection of all nano closed sets containing A and is denoted by Ncl(A). Ncl(A) is the smallest nano closed set containing A.

Definition:2.10 [11] Let $(U, \mathcal{T}_R(X))$ be a nano topological space and $A \subseteq U$. Then A is said to be

- Nano semi open if $A \subseteq Ncl[NInt(A)]$
- Nano semi closed if $NInt[Ncl(A)] \subseteq A$

NSO(U,X), NSC(U,X) respectively denote the families of all nano semi open, nano semi closed subsets of U.

Definition:2.11 [4] If $(U, \mathcal{T}_R(X))$ is a nano topological space with respect to X where $X \subseteq U$ and if $A \subseteq U$, Then

(i)The nano semi-closure of A is defined as the intersection of all nano semi closed sets containing A and it is denoted by Nscl(A). Nscl(A) is the smallest nano semi closed set containing A.

(ii) The nano semi-interior of A is defined as the union of all nano semi open subsets of A contained in A and it is denoted by NsInt(A). NsInt(A) is the largest nano semi open subset of A.

Definition:2.12 [4] A subset A of $(U, \mathcal{T}_R(X))$ is called nano generalized-semi closed set (briefly Ngs closed) if $Nscl(A) \subseteq V$ whenever $A \subseteq V$ and V is nano open in $(U, \mathcal{T}_R(X))$.

Definition:2.13 [6] Let $(X, \mathcal{T}_{1,2})$ be a bitopological space and $A \subseteq U$. Then A is said to be

- $(1,2)^*$ Semi open if $A \subseteq \tau_{1,2} cl[\tau_{1,2} Int(A)]$
- $(1,2)^*$ Semi closed if $\mathcal{T}_{1,2}Int[\mathcal{T}_{1,2}cl(A)] \subseteq A$

(1,2)*SO(X), (1,2)*SC(X) respectively denote the families of all (1,2)* semi open, (1,2)* semi closed subsets of X.

Definition:2.14 [7] If $(X, \mathcal{T}_{1,2})$ is a bitopological space with respect to X and if $A \subseteq X$, then

(i)The (1,2)* semi-closure of A is defined as the intersection of all (1,2)* semi closed sets containing A and it is denoted by $\tau_{1,2}$ scl(A). $\tau_{1,2}$ scl(A) is the smallest (1,2)* semi closed set containing A.

(ii) The (1,2)* semi-interior of A is defined as the union of all (1,2)* semi open subsets of A contained in A and it is denoted by $\tau_{1,2}$ sInt(A). $\tau_{1,2}$ sInt(A) is the largest (1,2)*semi open subset of A.

Definition:2.15 [7] A subset A of $(X, \tau_{1,2})$ is called $(1,2)^*$ generalized-semi closed set (briefly $(1,2)^*$ gs closed) if $\tau_{1,2}$ scl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ open in $(X, \tau_{1,2})$.

Definition:2.16 [5] A subset A of $(U, \tau_{R_{1,2}}(X))$ is called nano $(1,2)^*$ semigeneralized closed set (briefly N(1,2)*sg-closed) if $N_{\tau_{1,2}}scl(A)) \subseteq V$ whenever $A \subseteq V$ and V is nano $(1,2)^*$ semi open in $(U, \tau_{R_{1,2}}(X))$

3. NANO (1,2)* GENERALIZED –SEMI CLOSED SETS

In this section, the definition of nano $(1,2)^*$ generalized semi closed sets are introduced and studied some of its properties.

Definition:3.1[5] Let U be the universe, R be an equivalence relation on U and $\mathcal{T}_{R_{1,2}}(X) = \bigcup \{ \mathcal{T}_{R_1}(X), \mathcal{T}_{R_2}(X) \}$ where $\mathcal{T}_R(X) = \{ U, \phi, \underline{L}_R(X), \underline{U}_R(X), \underline{B}_R(X) \}$ and $X \subseteq U$. Then $\mathcal{T}_R(X)$ satisfies the following axioms:

- U and $\Phi \in \mathcal{T}_{R}(X)$
- The union of the elements of any sub-collection of $\tau_{R}(X)$ is in $\tau_{R}(X)$
- The intersection of the elements of any finite sub collection of $\tau_R(X)$ is in $\tau_R(X)$.

Then $(U, \tau_{R_{1,2}}(X))$ is called the nano bitopological space. Elements of the nano bitopology are known as nano (1,2)* open sets in U. Elements of $[\tau_{R_{1,2}}(X)]^c$ are called nano (1,2)* closed sets in $\tau_{R_{1,2}}(X)$.

Example:3.2 [5] Let $U = \{a, b, c, d\}$ with $U / R = \{\{c\}, \{d\}, \{a, b\}\}$

$$X_1 = \{a, c\}$$
 and $\mathcal{T}_{R_1}(X) = \{U, \phi, \{c\}, \{a, b, c\}, \{a, b\}\}$

$$X_2 = \{b,d\}$$
 and $\mathcal{T}_{R_2}(X) = \{U,\phi,\{d\},\{a,b,d\},\{a,b\}\}$

Then $\mathcal{T}_{R_{12}}(X) = \{U, \phi, \{c\}, \{d\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ which are $(1, 2)^*$ open sets.

The nano $(1,2)^*$ closed sets = { $U, \phi, \{c\}, \{d\}, \{c,d\}, \{a,b,c\}, \{a,b,d\}$ }.

Definition:3.3 [5] If $(U, \mathcal{T}_{R_{1,2}}(X))$ is a nano bitopological space with respect to X where $X \subseteq U$ and if $A \subseteq U$, then

(i) The nano $(1,2)^*$ closure of A is defined as the intersection of all nano $(1,2)^*$ closed sets containing A and it is denoted by $N_{\tau_{1,2}}cl(A)$. $N_{\tau_{1,2}}cl(A)$ is the smallest nano $(1,2)^*$ closed set containing A.

(ii) The nano $(1,2)^*$ interior of A is defined as the union of all nano $(1,2)^*$ open subsets of A contained in A and it is denoted by $N_{\tau_{1,2}}Int(A)$. $N_{\tau_{1,2}}Int(A)$ is the largest nano $(1,2)^*$ open subset of A.

Definition:3.4 [5] A subset A of $(U, \tau_{R_{1,2}}(X))$ is called nano $(1,2)^*$ semi open set if $A \subseteq N \tau_{1,2} cl[N \tau_{1,2} Int(A)]$. The complement of a nano $(1,2)^*$ semi open set of a space U is called nano $(1,2)^*$ semi closed set in $(U, \tau_{R_{1,2}}(X))$.

Definition:3.5 [5] If $(U, \mathcal{T}_{R_{1,2}}(X))$ is a nano bitopological space with respect to X where $X \subseteq U$ and if $A \subseteq U$, then

(i) The nano $(1,2)^*$ semi-closure of A is defined as the intersection of all nano $(1,2)^*$ semi-closed sets containing A and it is denoted by $N_{\tau_{1,2}}scl(A)$. $N_{\tau_{1,2}}scl(A)$ is the smallest nano $(1,2)^*$ semi-closed set containing A.

(ii) The nano $(1,2)^*$ semi-interior of A is defined as the union of all nano $(1,2)^*$ semi open subsets of A contained in A and it is denoted by $N_{\tau_{1,2}}sInt(A)$. $N_{\tau_{1,2}}sInt(A)$ is the largest nano $(1,2)^*$ semi open subsets of A.

Definition:3.6 A subset A of $(U, \tau_{R_{1,2}}(X))$ is called nano $(1,2)^*$ generalized-semi closed set (briefly N(1,2)*gs-closed) if $N_{\tau_{1,2}}scl(A)) \subseteq V$ whenever $A \subseteq V$ and V is nano $(1,2)^*$ open in $(U, \tau_{R_{1,2}}(X))$.

Example:3.7 Let $U = \{a, b, c, d\}$ with $U / R = \{\{c\}, \{d\}, \{a, b\}\}$

$$X_1 = \{a, c\}$$
 and $\mathcal{T}_{R_1}(X) = \{U, \phi, \{c\}, \{a, b, c\}, \{a, b\}\}$

$$X_2 = \{b, d\}$$
 and $\mathcal{T}_{R_2}(X) = \{U, \phi, \{d\}, \{a, b, d\}, \{a, b\}\}$

Then $\mathcal{T}_{R_{1,2}}(X) = \{U, \phi, \{c\}, \{d\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ are $(1,2)^*$ open sets.

The nano $(1,2)^*$ closed sets = { $U, \phi, \{c\}, \{d\}, \{c,d\}, \{a,b,c\}, \{a,b,d\}$ }.

The nano (1,2)* semi closed sets = $\{U, \phi, \{c\}, \{d\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}\}$

The nano $(1,2)^*$ semi open sets = { $U, \phi, \{a,b,d\}, \{a,b,c\}, \{c,d\}, \{a,b\}, \{d\}, \{c\}$ }

The nano $(1,2)^*$ semi-generalized open sets are

$$\{U, \phi, \{a\} \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\} \}$$

The nano $(1,2)^*$ semi-generalized closed sets are

$$\{U, \phi, \{a\} \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\} \}.$$

The nano $(1,2)^*$ generalized-semi open sets are

$$\{U,\phi,\{a\}\{b\},\{c\},\{d\},\{a,b\},\{a,c\},\{a,d\},\{b,c\},\{b,d\},\{c,d\},\{a,b,c\},\\ \{a,b,d\},\{a,c,d\},\{b,c,d\}\}$$

The nano (1,2)* generalized-semi closed sets are

$$\{U,\phi,\{a\}\{b\},\{c\},\{d\},\{a,b\},\{a,c\},\{a,d\},\{b,c\},\{b,d\},\{c,d\},\{a,b,c\},\{a,b,d\},\{a,c,d\},\{b,c,d\}\}.$$

Remark:3.8 Every nano $(1,2)^*$ semi-generalized closed set is a nano $(1,2)^*$ generalized-semi closed set. In Example 3.7, all nano $(1,2)^*$ semi-generalized closed sets are nano $(1,2)^*$ generalized-semi closed sets.

Remark:3.9 The converse of the above Remark 3.8 is need not be true. In Example 3.7, let $A = \{a\} \subseteq V$, $V = \{a, b, c, d\}$, V is nano $(1,2)^*$ open. $N_{\mathcal{T}_{1,2}} cl(A) = \{a, b\} \subseteq V$. Now $N_{\mathcal{T}_{1,2}} scl(A) = \{a, b\} \subseteq N_{\mathcal{T}_{1,2}} cl(A)$. If $N_{\mathcal{T}_{1,2}} cl(A) \subseteq V$, then $N_{\mathcal{T}_{1,2}} scl(A) \subseteq N_{\mathcal{T}_{1,2}} cl(A)$.

Theorem:3.10 Let $(U, \tau_{R_{1,2}}(X))$ be a nano bitopological space. If a subset A of a nano bitopological space $(U, \tau_{R_{1,2}}(X))$ is nano $(1,2)^*$ closed set in $(U, \tau_{R_{1,2}}(X))$, then A is a nano $(1,2)^*$ generalized-semi closed set in $(U, \tau_{R_{1,2}}(X))$.

Proof: Let A be a nano (1,2)* closed set of U and $A \subseteq V$, V is nano(1,2)* open in U. Since A is nano (1,2)* closed, $N_{\mathcal{T}_{1,2}}cl(A) = A$. So, $A \subseteq V$ and $N_{\mathcal{T}_{1,2}}cl(A) = A$ imply $N_{\mathcal{T}_{1,2}}cl(A) \subseteq V$. Also, $N_{\mathcal{T}_{1,2}}scl(A) \subseteq N_{\mathcal{T}_{1,2}}cl(A)$ implies $N_{\mathcal{T}_{1,2}}scl(A) \subseteq V$, $A \subseteq V$ V is nano (1,2)* open in U. Therefore, A is a nano (1,2)* generalized-semi closed set.

Theorem:3.11 Let $(U, \tau_{R_{1,2}}(X))$ be a nano bitopological space. If a subset A of a nano bitopological space $(U, \tau_{R_{1,2}}(X))$ is nano $(1,2)^*$ semi closed set in $(U, \tau_{R_{1,2}}(X))$, then A is a nano $(1,2)^*$ generalized semi closed set in $(U, \tau_{R_{1,2}}(X))$.

Proof: Let A be a nano $(1,2)^*$ semi closed set of U and $A \subseteq V$, V is nano $(1,2)^*$ open in U. Since A is nano $(1,2)^*$ semi closed, $N_{\mathcal{T}_{1,2}}scl(A) = A$. So, $A \subseteq V$ and $N_{\mathcal{T}_{1,2}}scl(A) = A$ imply $N_{\mathcal{T}_{1,2}}scl(A) \subseteq V$. Also, $A \subseteq V$, V is nano $(1,2)^*$ open in U. Therefore, A is a nano $(1,2)^*$ generalized-semi closed set.

Remark:3.12 The converse of the above Theorem 3.11 need not be true. In the Example 3.7, let A={a,c,d} be a nano $(1,2)^*$ generalized-semi closed set. Here $N_{\mathcal{T}_{1,2}}scl(A) \subseteq V$ whenever $A \subseteq V$, V is nano $(1,2)^*$ open in U. Hence $A = \{a,c,d\} \subseteq U$ is a nano $(1,2)^*$ generalized-semi closed set. Now $N_{\mathcal{T}_{1,2}}cl(A) = U$ and $N_{\mathcal{T}_{1,2}}Int(N_{\mathcal{T}_{1,2}}cl(A)) = U \not\subseteq A$ which implies that the set A={a,c,d} is not a nano $(1,2)^*$ semi closed set.

Theorem:3.13 Let A be a nano $(1,2)^*$ generalized-semi closed subset of $(U, \mathcal{T}_{R_{1,2}}(X))$. If $A \subseteq B \subseteq N \mathcal{T}_{1,2} scl(A)$, then B is also a nano $(1,2)^*$ generalized-semi closed subset of $(U, \mathcal{T}_{R_{1,2}}(X))$.

Proof: Let V be a nano $(1,2)^*$ open set of a nano $(1,2)^*$ generalized-semi closed subset of $\tau_{R_{1,2}}(X)$ such that $B \subseteq V$. As $A \subseteq B$, implies $A \subseteq V$. As A is a nano $(1,2)^*$ generalized-semi closed set, $N_{\tau_{1,2}}scl(A) \subseteq V$. Given $B \subseteq N_{\tau_{1,2}}scl(A)$, implies $N_{\tau_{1,2}}scl(B) \subseteq N_{\tau_{1,2}}scl(A)$. As $N_{\tau_{1,2}}scl(B) \subseteq N_{\tau_{1,2}}scl(A)$ and $N_{\tau_{1,2}}scl(A) \subseteq V$, implies $N_{\tau_{1,2}}scl(B) \subseteq V$ whenever $B \subseteq V$ and V is nano $(1,2)^*$ open. Hence B is also a nano $(1,2)^*$ generalized-semi closed subset of $(U, \tau_{R_{1,2}}(X))$.

Theorem:3.14 Let A be a nano $(1,2)^*$ generalized-semi closed set in $(U, \mathcal{T}_{R_{1,2}}(X))$. Then $N\mathcal{T}_{1,2}scl(A) - A$ has no non-empty nano $(1,2)^*$ closed set.

Proof: Let A be nano $(1,2)^*$ generalized semi closed set in $(U, \mathcal{T}_{R_{1,2}}(X))$ and F be a nano $(1,2)^*$ closed subset of $N_{\mathcal{T}_{1,2}}scl(A) - A$. That is, $F \subseteq N_{\mathcal{T}_{1,2}}scl(A) - A$. Which implies that $F \subseteq N_{\mathcal{T}_{1,2}}scl(A) \cap A^c$. That is $F \subseteq N_{\mathcal{T}_{1,2}}scl(A)$ and $F \subseteq A^c$. $F \subseteq A^c$ implies that $A \subseteq F^c$ where F^c is a nano $(1,2)^*$ open set. Since A is nano $(1,2)^*$ semi generalized closed,

 $N_{\mathcal{T}_{1,2}}scl(A) \subseteq F^c$. That is $F \subseteq [N_{\mathcal{T}_{1,2}}scl(A)]^c$. Thus $F \subseteq N_{\mathcal{T}_{1,2}}scl(A) \cap [N_{\mathcal{T}_{1,2}}scl(A)]^c = \phi$. Therefore $F = \phi$.

Theorem:3.15 Let A be a nano $(1,2)^*$ generalized semi closed set in $(U, \mathcal{T}_{R_{1,2}}(X))$. Then A is nano $(1,2)^*$ closed if and only if, $N_{\mathcal{T}_{1,2}}scl(A) - A$ is nano $(1,2)^*$ closed set.

Proof: Let A be a nano $(1,2)^*$ generalized semi closed set in $(U, \mathcal{T}_{R_{1,2}}(X))$. If A is nano $(1,2)^*$ closed, then $N_{\mathcal{T}_{1,2}}scl(A) - A = \phi$, which is a nano $(1,2)^*$ closed set.

Conversely, let $N_{\tau_{1,2}}scl(A) - A$ be nano $(1,2)^*$ closed. Then by the above Theorem 3.14 $N_{\tau_{1,2}}scl(A) - A$ does not contain any non-empty nano $(1,2)^*$ closed set. Thus, $N_{\tau_{1,2}}scl(A) - A = \phi$. That is, $N_{\tau_{1,2}}scl(A) = A$. Therefore A is nano $(1,2)^*$ closed.

4. CHARACTERIZATIONS ON NANO (1,2)* GENERALIZED-SEMI SPACES

In this section some new characterizations of Nano $(1,2)^*$ generalized-semi spaces are introduced and studied some of its properties.

Definition:4.1 If $(U, \mathcal{T}_{R_{1,2}}(X))$ is a nano bitopological space with respect to X where $X \subseteq U$ and if $A \subseteq U$, Then

(i)The nano (1,2)*generalized semi closure of A is defined as the intersection of all nano (1,2)* generalized semi closed sets containing A and it is denoted by $N_{\tau_{1,2}}gscl(A)$. $N_{\tau_{1,2}}gscl(A)$ is the smallest nano (1,2)* generalized semi closed set containing A.

(ii) The nano (1,2)* generalized semi interior of A is defined as the union of all nano (1,2)* generalized semi open subsets of A contained in A and it is denoted by $N_{\tau_{1,2}}gsInt(A)$ $N_{\tau_{1,2}}gsInt(A)$ is the largest nano (1,2)* generalized semi open subset of A.

Definition:4.2 [5] A space $(U, \mathcal{T}_{R_{1,2}}(X))$ is called nano $(1,2)^*-T_0$ (briefly written as $N(1,2)^*-T_0$), if and only if, each pair of distinct points x, y of $\mathcal{T}_{R_{1,2}}(X)$, there exist a nano $(1,2)^*$ open set containing one but not the other.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

Definition:4.3 [5] A space $(U, \mathcal{T}_{R_{1,2}}(X))$ is called nano $(1,2)^*$ semi $-T_0$ (briefly written as N(1,2)*s- T_0), if and only if, each pair of distinct points x, y of $\mathcal{T}_{R_{1,2}}(X)$, there exist a nano $(1,2)^*$ semi open set containing one but not the other.

Definition:4.4 A space $(U, \tau_{R_{1,2}}(X))$ is called nano $(1,2)^*$ generalized semi- T_0 (briefly written as N(1,2)*gs- T_0), if and only if, each pair of distinct points x, y of $\tau_{R_{1,2}}(X)$, there exist a nano $(1,2)^*$ generalized semi open set containing one but not the other.

Remark:4.5 Every nano $(1,2)^*$ semi- T_0 space is nano $(1,2)^*$ generalized semi- T_0 space since every nano $(1,2)^*$ semi open set is nano $(1,2)^*$ generalized semi open set but converse is not true.

Theorem:4.6 If in any nano bitopological space $(U, \mathcal{T}_{R_{1,2}}(X))$, nano $(1,2)^*$ generalized semi closures of distinct points are distinct, then $\mathcal{T}_{R_{1,2}}(X)$ is nano $(1,2)^*$ generalized semi- T_0

Proof: Let $x, y \in \tau_{R_{1,2}}(X)$, $x \neq y$ imply $N \tau_{1,2} gscl\{x\} \neq N \tau_{1,2} gscl\{y\}$. Then there exists a point $z \in \tau_{R_{1,2}}(X)$ such that z belongs one of two sets, say $N \tau_{1,2} gscl\{y\}$ but not to $N \tau_{1,2} gscl\{x\}$. If suppose that $z \in N \tau_{1,2} gscl\{x\}$, then $z \in N \tau_{1,2} gscl\{y\} \subset N \tau_{1,2} gscl\{x\}$, which is contradiction. So, $y \in X - N \tau_{1,2} gscl\{x\}$, where $X - N \tau_{1,2} gscl\{x\}$ is nano (1,2)* generalized semi open set which does not contain x, This shows that X is generalized semi- T_0

Theorem:4.7 In any nano bitopological space $(U, \mathcal{T}_{R_{1,2}}(X))$, nano $(1,2)^*$ generalized semi closures of distinct points are distinct.

Proof: Let $x, y \in \mathcal{T}_{R_{1,2}}(X)$ with $x \neq y$. To show that $N_{\mathcal{T}_{1,2}}gscl\{x\} \neq N_{\mathcal{T}_{1,2}}gscl\{y\}$ Considered the two sets $N_{\mathcal{T}_{1,2}}gscl\{x\}$ and $N_{\mathcal{T}_{1,2}}gscl\{y\}$ in $\mathcal{T}_{R_{1,2}}(X)$. Then there exists a point $z \in \mathcal{T}_{R_{1,2}}(X)$ such that z belongs one of two sets, say $N_{\mathcal{T}_{1,2}}gscl\{y\}$ but not to $N_{\mathcal{T}_{1,2}}gscl\{x\}$. If suppose that $z \in N_{\mathcal{T}_{1,2}}gscl\{x\}$, then $z \in N_{\mathcal{T}_{1,2}}gscl\{y\} \subset N_{\mathcal{T}_{1,2}}gscl\{x\}$, which is contradiction. Hence $N_{\mathcal{T}_{1,2}}gscl\{x\} \neq N_{\mathcal{T}_{1,2}}gscl\{y\}$.

Definition:4.8 A space $(U, \mathcal{T}_{R_{1,2}}(X))$ is called nano $(1,2)^*$ generalized semi- T_1 (briefly written as N(1,2)*gs- T_1), if and only if, each pair of distinct points x, y of X, there exists a pair of nano $(1,2)^*$ generalized semi open sets, one containing x but not y, and the other containing y but not x.

References:

- [1].S.P. Arya and T. Nour, (1990), Characterizations of s- Normal Spaces, Indian J.Pure Appl.Math., Vol.21, Pp. 717-719.
- [2].P.Bhattacharyya and B.K.Lahiri, (1987), Semi Generalized Closed Sets in Topology, Indian J. Pure Appl.Math., vol.29, Pp.375-382.
- [3]. K.Bhuvaneswari and K.Mythili Gnanapriya, Nano Generalized Closed Sets in Nano Topological Spaces.International Journal of Scientific and Research Publictions, Vol. 4, Issue 5, May 2014 ISSN 2250-3153.
- [4].K.Bhuvaneswari and A.Ezhilarasi, On Nano Semi-Generalized and Nano Generalized-Semi Closed Sets in Nano Topological Spaces. International Journal of Mathematics and Computer Applications Research (IJMCAR) ISSN: 2249-8060. Vol. 4, Issue 3, Jun. 2014, 117-124.
- [5].K.Bhuvaneswari and J.Sheeba Priyadharshini, On Nano (1,2)* Semi Generalized Closed Sets in Nano Bitopological Spaces. International Journal of Applied Mathematics & Statistical Sciences (IJAMSS) ISSN: 2319-3972; V0l. 5, Issue 3, Apr-May 2016; 19-30.
- [6].T.Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. III 35 (1986) 19-28.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

- [7].T.Fukutake, Semi open sets on bitopological spaces, Bull. Fukuoka. Univ. of Educ., 38 (1989) 1-7.
- [8].John L Kelly, General Topology, springer-Verlag Newyork, Berlin Heidelbery, (1955)
- [9].J.C.Kelly Bitopological Spaces, Proc. London Math. Soc., 13 (1963), 71-89.
- [10]. M.Lellis Thivagar, and Carmel Richard, Note on Nano Topological Spaces (communicated).
- [11]. M.Lellis Thivagar, and Carmel Richard, On Nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, Volume I Issue I, August 2013, Pp.31-37.

[12]. N.Levine, (1963), Semi open sets and Semi continuity in Topological Spaces, Amer.Math. Monthly, vol.70, Pp.36-41.

- [13]. N.Levine, (1970), Generalized closed sets in topological spaces, Rend, Circ.Mat,Palermo. Vol.19. Pp.89-96.
- [14].S.N.Maheshwari and R.Prasad (1975), Some new separation axioms, Ann.Soc.Sci.Bruxelles,Ser.I., 89, 395-402.