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ABSTRACT 
 

Parabolic partial differential equations arise in the mathematical modelling of many physical 

phenomena. In this paper, we use Haar wavelet method for the numerical solution of 

two-dimensional heat equation. The basic idea of Haar wavelet collocation method is to convert 

the partial differential equation into a system of algebraic equations that involves a finite number 

of variables. The numerical results are compared with the exact solution to prove the accuracy of 

the Haar wavelet method. 
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1  Introduction 
 

Parabolic partial differential equations (PDEs) are used to describe variety of problems in science 

including heat diffusion, ocean acoustic propagation, physical or mathematical systems with a 

time variable, and processes that behave essentially like heat diffusing through a solid. Analytical 

methods like method of separation of variables [1] and differential transform method [2] have been 

widely used to solve parabolic PDEs. Semi-analytical methods like Adomian decomposition 

method [3, 4] and homotopy analysis method [5] have been applied to solve parabolic PDEs. 

Numerical methods like finite difference methods [6, 7], finite volume methods [8, 9], explicit 

Runge-Kutta methods [10], method of lines [11], interpolation technique [12], methods using 
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radial basis functions [13] and Pade approximation [14] have also been used to solve parabolic 

PDEs.  

 

In the recent years, wavelets have been widely used to solve differential equations. Alfred Haar, a 

Hungarian mathematician introduced Haar wavelets in 1910. The Haar wavelets consist of 

piecewise constant functions and are therefore the simplest orthonormal wavelets with a compact 

support. An advantage of these wavelets is the possibility to integrate them analytically arbitrary 

times. They are the simplest possible wavelets and are often known as a first order Daubechies 

wavelet which are conceptually simple, fast, memory efficient and exactly reversible. Sumana and 

Achala [15] have given a brief report on Haar wavelets.  

 

Lepik [16] applied the Haar wavelet method along with the segmentation technique to solve 

differential equations. Khalid et. al. [17] solved Airy differential equation using Haar wavelets. Shi 

and Cao [18] applied Haar wavelets to solve eigenvalue problems of high order differential 

equations. Lepik [19] applied Haar wavelets to solve evolution equations. Bujurke et. al. [20] 

applied wavelet-multigrid method to solve elliptic partial differential equations. Lepik [21] used 

two-dimensional Haar wavelets to solve diffusion equation and Poisson equation.  

 

The paper is organized as follows. The Haar wavelet preliminaries and the function approximation 

are presented in Section 2 and Section 3 respectively. The method of solution of the 

two-dimensional heat equation using Haar wavelets is proposed in Section 4. The numerical 

examples and discussions are presented in Section 5. The conclusions drawn are presented in 

Section 6. 

 

2  Preliminaries of Haar Wavelets  
 

The Haar wavelet family for [0,1]x  is defined [22] as follows 
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Here = 2 , = 0,1, ,nm n J  indicates the level of the wavelet; = 0,1, , 1k m  is the translation 

parameter. J  is the maximum level of resolution. The index i  in equation (1) is calculated by 

the formula = 1i m k  . In the case of minimum values = 1, = 0m k  we have = 2i . The 

maximum value of i  is 1= 2 = 2Ji M  . For =1i , 1( )h x  is assumed to be the scaling function 

which is defined as follows. 

 
1

1 for [0,1)
( ) =

0 elsewhere

x
h x





 (3) 

 

We require the following integrals in order to solve second order partial differential equations. 
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3  Function Approximation 
 

According to the two-dimensional multi-resolution analysis, any function ( , )f x y  which is 

square integrable on [0,1) [0,1)  can be expressed in terms of two-dimensional Haar series as 

follows.  

 
=1 =1

( , ) = ( , ) ( ) ( ).i j

i j

f x y a i j h x h y
 

  (6) 

 

Here, the expansion of ( , )f x y  is an infinite series. If ( , )f x y  is approximated as piecewise 

constant in each sub-area, then it will be terminated at finite terms, that is,  

 

2 2
1 2

=1 =1

( , ) = ( , ) ( ) ( ),

M M

i j

i j

f x y a i j h x h y  (7) 

where the wavelet coefficients 1 2( , ), = 1,2, ,2 , = 1,2, ,2a i j i M j M  are to be determined. 

 

4  Method of Solution 
 

Consider the two-dimensional heat equation  
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2 2
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= , 0 , 1, 0,
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c x y t

t x y

   
    

   
 (8) 

with initial and boundary conditions  

 ( , ,0) = ( , ),0 , 1,u x y F x y x y   (9) 
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Let us divide the interval [0,1]  into N  equal parts of length =
T

t
N

  and denote  

= ( 1) , = 1,2,3... .st s t s N    

 

Let the Haar wavelet solution be in the form  
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Integrating (13) w.r.t. t  in the limits [ , ]st t , we have  
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Integrating equation (13) twice w.r.t. y  in the limits [0, ]y  and using (10) gives  
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Integrating equation (13) twice w.r.t. x  in the limits [0, ]x  and using (11) leads to  
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Integrating equation (14) twice w.r.t x  in the limits [0, ]x  and using (11), we arrive at  
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Differentiating equation (16) w.r.t t  gives  
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The wavelet collocation points are defined as  
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Substituting equations (14), (15) and (17) in equation (8), and taking lx x . ny y  and 

1st t   in the resultant equation and equations (14)-(16), we obtain 
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Using the initial conditions (9), we have  
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The wavelet coefficients ( , ),sa i j 1 2= 1,2, ,2 , = 1,2, ,2i M j M  can be successively calculated 

from equation (20). This process is started with equation (26). These coefficients are then 

substituted in equations (23)-(25) to obtain the approximate solutions at different time levels. 

 

5  Numerical Examples and Discussion 
 

In this section, examples are considered to check the efficiency and accuracy of the Haar wavelet 

collocation method (HWCM). Lagrange bivariate interpolation is used to find the solution at the 

specified points. The entire computational work has been done with the help of MATLAB 

software. 
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Example 1: 
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 (27) 

The exact solution is  

 
22( , , ) = 2sin( )sin( ) tu x y t x y e   

 (28) 

 

The HWCM solution of the example at = 0.01,0.05,0.1t  with 1 = 16M , 2 = 16M  and 

= 0.0001t  in Tables 1,2,3. The results are compared with the exact solution. Figures 1,2 show 

the comparison of the HWCM solution with the exact solution and the physical behavior of the 

HWCM solution in contour and 3D at = 0.1t . If ( , , )ex su x y t  is the exact solution (28) at = st t , 

we define the error estimate as  

 
1 2

1
( ) = ( , , ) ( , , )

2 2
s s ex st u x y t u x y t

M M
   (29) 

We have obtained the following error estimates for 1 = 16M , 2 = 16M  and = 0.0001t .  

    1.  (0.01) = 5.2075 06E   in 2L  space and (0.01) = 6.6250 06E   in L  space.  

    2.  (0.05) = 1.4590 05E   in 2L  space and (0.05) = 1.8561 05E   in L  space.  

    3.  (0.1) = 1.5810 05E   in 2L  space and (0.1) = 2.0114 05E   in L  space.  
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The exact solution is  

 
1 1

( , , ) = cos cos
2 2

tu x y t e x y        
        

      
 (31) 

 

The HWCM solution of the example at = 0.01,0.05,0.1t  with 1 = 16M , 2 = 16M  and 
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= 0.0001t  in Tables 4,5,6. The results are compared with the exact solution. Figures 3,4 show 

the comparison of the HWCM solution with the exact solution and the physical behavior of the 

HWCM solution in contour and 3D at = 0.1t . We have obtained the following error estimates for 

1 = 16M , 2 = 16M  and = 0.0001t . 

    1.  (0.01) = 2.9748 07E   in 2L  space and (0.01) = 3.7846 07E   in L  space.  

    2.  (0.05) = 1.4352 06E   in 2L  space and (0.05) = 1.8259 06E   in L  space.  

    3.  (0.1) = 7.2213 04E   in 2L  space and (0.1) = 9.1871 04E   in L  space.  

 

Example 3: 

 

2 2
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( , ,0) = (1 ) , 0 , 1
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0 1, 0,
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x

x t

t

t

u u u
x y t

t x y

u x y y e x y

u x t e
x t

u x t

u y t y e
y t

u y t y e





  
   

  

  


  




  

 

 (32) 

The exact solution is  

 ( , , ) = (1 ) x tu x y t y e   (33) 

 

The HWCM solution of the example at = 0.01,0.05,0.1t  with 1 = 4M , 2 = 4M  and = 0.001t  

in Tables 7,8,9. The results are compared with the exact solution. Figures 5,6 show the comparison 

of the HWCM solution with the exact solution and the physical behavior of the HWCM solution in 

contour and 3D at = 0.1t . We have obtained the following error estimates for 1 = 4M , 2 = 4M  

and = 0.001t . 

    1.  (0.01) = 1.8815 17E   in 2L  space and (0.01) = 3.0358 17E   in L  space.  

    2.  (0.05) = 1.0148 16E   in 2L  space and (0.05) = 1.4615 16E   in L  space.  

    3.  (0.1) = 1.0614 16E   in 2L  space and (0.1) = 1.2273 16E   in L  space.  

 

6  Conclusion 
 

In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve 

parabolic partial differential equation, namely, two-dimensional heat equation. The numerical 

scheme is tested for three examples. The obtained numerical results are compared with the exact 

solutions. We observe that the error estimates are negligibly small in the case of nonlocal boundary 

conditions (i.e., Example 3) for a small number of grid points. Thus the Haar wavelet method 
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guarantees the necessary accuracy with a small number of grid points and a wide class of PDEs can 

be solved using this approach. This method takes care of boundary conditions automatically and 

hence it is the most convenient method for solving boundary value problems. This method can also 

be used to solve nonlinear PDEs. 
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Figure 1: Comparison of the HWCM solution and exact solution of Example 1 at = 0.1t  

 

  
 

Figure 2: Physical behaviour of the HWCM solution of Example 1 at = 0.1t  

 

  
 

Figure 3: Comparison of the HWCM solution and exact solution of Example 2 at = 0.1t  
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 Figure 4: Physical behaviour of the HWCM solution of Example 2 at = 0.1t   

 

  
 

 Figure 5: Comparison of the HWCM solution and exact solution of Example 3 at = 0.1t   

 

  
 

 Figure 6: Physical behaviour of the HWCM solution of Example 3 at = 0.1t   
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Table 1: Comparison of HWCM solution and exact solution of Example 1 at = 0.01t   

  

 ( , )x y    HWCM   Exact   ( , )x y    HWCM   Exact  

(0.1,0.2)   0.29825855   0.29819802   (0.5,0.6)   1.56170205   1.56138509  

(0.1,0.4)   0.48259247   0.48249453   (0.5,0.8)   0.96518495   0.96498905  

(0.1,0.6)   0.48259247   0.48249453   (0.7,0.2)   0.78085103   0.78069254  

(0.1,0.8)   0.29825855   0.29819802   (0.7,0.4)   1.26344350   1.26318707  

(0.3,0.2)   0.78085103   0.78069254   (0.7,0.6)   1.26344350   1.26318707  

(0.3,0.4)   1.26344350   1.26318707   (0.7,0.8)   0.78085103   0.78069254  

(0.3,0.6)   1.26344350   1.26318707   (0.9,0.2)   0.29825855   0.29819802  

(0.3,0.8)   0.78085103   0.78069254   (0.9,0.4)   0.48259247   0.48249453  

(0.5,0.2)   0.96518495   0.96498905   (0.9,0.6)   0.48259247   0.48249453  

(0.5,0.4)   1.56170205   1.56138509   (0.9,0.8)   0.29825855   0.29819802  

 

 

 Table 2: Comparison of HWCM solution and exact solution of Example 1 at = 0.05t   

  

 ( , )x y    HWCM   Exact   ( , )x y    HWCM   Exact  

(0.1,0.2)   0.13556365   0.13539405   (0.5,0.6)   0.70982048   0.70893244  

(0.1,0.4)   0.21934659   0.21907217   (0.5,0.8)   0.43869318   0.43814434  

(0.1,0.6)   0.21934659   0.21907217   (0.7,0.2)   0.35491024   0.35446622  

(0.1,0.8)   0.13556365   0.13539405   (0.7,0.4)   0.57425683   0.57353839  

(0.3,0.2)   0.35491024   0.35446622   (0.7,0.6)   0.57425683   0.57353839  

(0.3,0.4)   0.57425683   0.57353839   (0.7,0.8)   0.35491024   0.35446622  

(0.3,0.6)   0.57425683   0.57353839   (0.9,0.2)   0.13556365   0.13539405  

(0.3,0.8)   0.35491024   0.35446622   (0.9,0.4)   0.21934659   0.21907217  

(0.5,0.2)   0.43869318   0.43814434   (0.9,0.6)   0.21934659   0.21907217  

(0.5,0.4)   0.70982048   0.70893244   (0.9,0.8)   0.13556365   0.13539405  

 

  

Table 3: Comparison of HWCM solution and exact solution of Example 1 at = 0.1t   

  

 ( , )x y    HWCM   Exact   ( , )x y    HWCM   Exact  

(0.1,0.2)   0.05064621   0.05046242   (0.5,0.6)   0.26518702   0.26422468  

(0.1,0.4)   0.08194730   0.08164992   (0.5,0.8)   0.16389459   0.16329983  

(0.1,0.6)   0.08194730   0.08164992   (0.7,0.2)   0.13259351   0.13211234  

(0.1,0.8)   0.05064621   0.05046242   (0.7,0.4)   0.21454081   0.21376225  

(0.3,0.2)   0.13259351   0.13211234   (0.7,0.6)   0.21454081   0.21376225  

(0.3,0.4)   0.21454081   0.21376225   (0.7,0.8)   0.13259351   0.13211234  

(0.3,0.6)   0.21454081   0.21376225   (0.9,0.2)   0.05064621   0.05046242  

(0.3,0.8)   0.13259351   0.13211234   (0.9,0.4)   0.08194730   0.08164992  

(0.5,0.2)   0.16389459   0.16329983   (0.9,0.6)   0.08194730   0.08164992  

(0.5,0.4)   0.26518702   0.26422468   (0.9,0.8)   0.05064621   0.05046242  
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Table 4: Comparison of HWCM solution and exact solution of Example 2 at = 0.01t   

  

 ( , )x y    HWCM   Exact   ( , )x y    HWCM   Exact  

(0.1,0.2)   0.17983179   0.17982833   (0.5,0.6)   0.94161145   0.94159335  

(0.1,0.4)   0.29097394   0.29096835   (0.5,0.8)   0.58194788   0.58193669  

(0.1,0.6)   0.29097394   0.29096835   (0.7,0.2)   0.47080573   0.47079667  

(0.1,0.8)   0.17983179   0.17982833   (0.7,0.4)   0.76177967   0.76176502  

(0.3,0.2)   0.47080573   0.47079667   (0.7,0.6)   0.76177967   0.76176502  

(0.3,0.4)   0.76177967   0.76176502   (0.7,0.8)   0.47080573   0.47079667  

(0.3,0.6)   0.76177967   0.76176502   (0.9,0.2)   0.17983179   0.17982833  

(0.3,0.8)   0.47080573   0.47079667   (0.9,0.4)   0.29097394   0.29096835  

(0.5,0.2)   0.58194788   0.58193669   (0.9,0.6)   0.29097394   0.29096835  

(0.5,0.4)   0.94161145   0.94159335   (0.9,0.8)   0.17983179   0.17982833  

 

  

Table 5: Comparison of HWCM solution and exact solution of Example 2 at = 0.05t   

  

 ( , )x y    HWCM   Exact   ( , )x y    HWCM   Exact  

(0.1,0.2)   0.17279384   0.17277716   (0.5,0.6)   0.90476030   0.90467294  

(0.1,0.4)   0.27958631   0.27955931   (0.5,0.8)   0.55917262   0.55911863  

(0.1,0.6)   0.27958631   0.27955931   (0.7,0.2)   0.45238015   0.45233647  

(0.1,0.8)   0.17279384   0.17277716   (0.7,0.4)   0.73196646   0.73189578  

(0.3,0.2)   0.45238015   0.45233647   (0.7,0.6)   0.73196646   0.73189578  

(0.3,0.4)   0.73196646   0.73189578   (0.7,0.8)   0.45238015   0.45233647  

(0.3,0.6)   0.73196646   0.73189578   (0.9,0.2)   0.17279384   0.17277716  

(0.3,0.8)   0.45238015   0.45233647   (0.9,0.4)   0.27958631   0.27955931  

(0.5,0.2)   0.55917262   0.55911863   (0.9,0.6)   0.27958631   0.27955931  

(0.5,0.4)   0.90476030   0.90467294   (0.9,0.8)   0.17279384   0.17277716  

 

  

Table 6: Comparison of HWCM solution and exact solution of Example 2 at = 0.1t   

  

 ( , )x y    HWCM   Exact   ( , )x y    HWCM   Exact  

(0.1,0.2)   0.16438263   0.16435072   (0.5,0.6)   0.86071863   0.86055152  

(0.1,0.4)   0.26597668   0.26592505   (0.5,0.8)   0.53195337   0.53185009  

(0.1,0.6)   0.26597668   0.26592505   (0.7,0.2)   0.43035931   0.43027576  

(0.1,0.8)   0.16438263   0.16435072   (0.7,0.4)   0.69633600   0.69620081  

(0.3,0.2)   0.43035931   0.43027576   (0.7,0.6)   0.69633600   0.69620081  

(0.3,0.4)   0.69633600   0.69620081   (0.7,0.8)   0.43035931   0.43027576  

(0.3,0.6)   0.69633600   0.69620081   (0.9,0.2)   0.16438263   0.16435072  

(0.3,0.8)   0.43035931   0.43027576   (0.9,0.4)   0.26597668   0.26592505  

(0.5,0.2)   0.53195337   0.53185009   (0.9,0.6)   0.26597668   0.26592505  

(0.5,0.4)   0.86071863   0.86055152   (0.9,0.8)   0.16438263   0.16435072  
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Table 7: Comparison of HWCM solution and exact solution of Example 3 at = 0.01t   

  

 ( , )x y    HWCM   Exact   ( , )x y    HWCM   Exact  

(0.1,0.2)   0.89302246   0.89302246   (0.5,0.6)   0.66611648   0.66611648  

(0.1,0.4)   0.66976684   0.66976684   (0.5,0.8)   0.33305824   0.33305824  

(0.1,0.6)   0.44651123   0.44651123   (0.7,0.2)   1.62719301   1.62719301  

(0.1,0.8)   0.22325561   0.22325561   (0.7,0.4)   1.22039476   1.22039476  

(0.3,0.2)   1.09074009   1.09074009   (0.7,0.6)   0.81359650   0.81359650  

(0.3,0.4)   0.81805507   0.81805507   (0.7,0.8)   0.40679825   0.40679825  

(0.3,0.6)   0.54537005   0.54537005   (0.9,0.2)   1.98745803   1.98745803  

(0.3,0.8)   0.27268502   0.27268502   (0.9,0.4)   1.49059352   1.49059352  

(0.5,0.2)   1.33223296   1.33223296   (0.9,0.6)   0.99372901   0.99372901  

(0.5,0.4)   0.99917472   0.99917472   (0.9,0.8)   0.49686451   0.49686451  

 

  

Table 8: Comparison of HWCM solution and exact solution of Example 3 at = 0.05t   

  

 ( , )x y    HWCM   Exact   ( , )x y    HWCM   Exact  

(0.1,0.2)   0.92946740   0.92946739   (0.5,0.6)   0.69330121   0.69330121  

(0.1,0.4)   0.69710055   0.69710055   (0.5,0.8)   0.34665060   0.34665060  

(0.1,0.6)   0.46473370   0.46473370   (0.7,0.2)   1.69360001   1.69360001  

(0.1,0.8)   0.23236685   0.23236685   (0.7,0.4)   1.27020001   1.27020001  

(0.3,0.2)   1.13525404   1.13525404   (0.7,0.6)   0.84680001   0.84680001  

(0.3,0.4)   0.85144053   0.85144053   (0.7,0.8)   0.42340000   0.42340000  

(0.3,0.6)   0.56762702   0.56762702   (0.9,0.2)   2.06856773   2.06856773  

(0.3,0.8)   0.28381351   0.28381351   (0.9,0.4)   1.55142580   1.55142580  

(0.5,0.2)   1.38660241   1.38660241   (0.9,0.6)   1.03428386   1.03428386  

(0.5,0.4)   1.03995181   1.03995181   (0.9,0.8)   0.51714193   0.51714193  

 

  

Table 9: Comparison of HWCM solution and exact solution of Example 3 at = 0.1t   

  

 ( , )x y    HWCM   Exact   ( , )x y    HWCM   Exact  

(0.1,0.2)   0.97712221   0.97712221   (0.5,0.6)   0.72884752   0.72884752  

(0.1,0.4)   0.73284166   0.73284165   (0.5,0.8)   0.36442376   0.36442376  

(0.1,0.6)   0.48856110   0.48856110   (0.7,0.2)   1.78043274   1.78043274  

(0.1,0.8)   0.24428055   0.24428055   (0.7,0.4)   1.33532456   1.33532456  

(0.3,0.2)   1.19345976   1.19345976   (0.7,0.6)   0.89021637   0.89021637  

(0.3,0.4)   0.89509482   0.89509482   (0.7,0.8)   0.44510819   0.44510819  

(0.3,0.6)   0.59672988   0.59672988   (0.9,0.2)   2.17462546   2.17462546  

(0.3,0.8)   0.29836494   0.29836494   (0.9,0.4)   1.63096910   1.63096910  

(0.5,0.2)   1.45769504   1.45769504   (0.9,0.6)   1.08731273   1.08731273  

(0.5,0.4)   1.09327128   1.09327128   (0.9,0.8)   0.54365637   0.54365637  
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