

ON SBĜ – CONTINUOUS FUNCTIONS AND SBĜ - HOMEOMORPHISMS IN TOPOLOGICAL SPACES

K. Bala Deepa Arasi¹ and S.Navaneetha Krishnan²

¹Assistant Professor of Mathematics, A.P.C.Mahalaxmi College for Women, Thoothukudi, TN, India. ²Associate Professor of Mathematics, V.O. Chidambaram College, Thoothukudi, TN, India.

ABSTRACT

In this paper, we define new class of functions namely $sb\hat{g}$ – continuous functions and $sb\hat{g}$ – open maps and we prove some of their basic properties. Also, we introduce a new class of $sb\hat{g}$ – homeomorphisms and we prove some of their relationship among other homeomorphisms. Throughout this paper $f: (X,\tau) \rightarrow (Y,\sigma)$ is a function from a topological space (X,τ) to a topological space (Y,σ) .

Keywords: closed set, sb \hat{g} -closed sets, sb \hat{g} - continuous functions, sb \hat{g} - irresolute functions, sb \hat{g} - open maps, sb \hat{g} - closed maps and sb \hat{g} - homeomorphisms.

AMS Mathematics Subject Classification (2010): 54A05.

1. INTRODUCTION

In 1963, N.Levine[9] introduced semi-open sets in Topology and studied their properties. Andrijevic[2] introduced one such new version called b-open sets in 1996. N.Levine[10] introduced the concept of generalized closed sets and studied their properties in 1970. By considering the concept of g-closed sets many concepts of topology have been generalized and interesting results have been obtained by several mathematician. M.K.R.S.Veerakumar[21] defined ĝ-closed sets in 2003. Also, R.Subasree and M.Mariasingam[17] introduced bĝ-closed sets in 2013. We introduced sbĝ-closed sets[4]and studied their properties in 2015. K.Balachandran et al[7] introduced the concept of generalized continuous maps in Topological spaces.

These concepts motivate us to define a new version of maps namely $sb\hat{g}$ – continuous, $sb\hat{g}$ – open maps and $sb\hat{g}$ – homeomorphisms. Also, we prove some properties of these functions and establish the relationships between $sb\hat{g}$ – homeomorphisms and other homeomorphisms.

2. PRELIMINARIES

Throughout this paper (X, τ) (or simply X) represents topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of (X,τ) , Cl(A), Int(A) and A^c denote the closure of A, interior of A and the complement of A respectively. We are giving some definitions.

Definition 2.1: A subset A of a topological space (X,τ) is called

- 1. a semi-open set[9] if $A \subseteq Cl(Int(A))$.
- 2. an α -open set[6] if $A \subseteq Int(Cl(Int(A)))$.
- 3. a b-open set[2] if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$.
- 4. a regular open[13] set if A = Int(Cl(A)).

The complement of a semi-open (resp. α -open, b-open, regular-open) set is called semiclosed (resp. α -closed, b-closed, regular-closed) set.

The intersection of all semi-closed (resp. α -closed, b-closed, regular-closed) sets of X containing A is called the semi-closure (resp. α -closure, b-closure, regular closure) of A and is denoted by sCl(A) (resp. α Cl(A), bCl(A), rCl(A)). The family of all semi-open (resp. α -open, b-open, regular-open) subsets of a space X is denoted by SO(X) (resp. α O(X), bO(X), rO(X)).

Definition 2.2: A subset A of a topological space (X, τ) is called

- a generalized closed set (briefly g-closed)[11] if Cl(A) ⊆ U whenever A ⊆ U and U is open in X.
- 2) a sg-closed set[5] if $sCl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
- 3) a gs-closed set[3] if $sCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 4) a gb-closed set[1] if $bCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 5) a rb-closed set[12] if $rCl(A) \subseteq U$ whenever $A \subseteq U$ and U is b-open in X.
- 6) a g*b-closed set[23] if $bCl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
- 7) a \hat{g} -closed set[19] if Cl(A) \subseteq U whenever A \subseteq U and U is semi-open in X.
- 8) a bĝ-closed set[17] if $bCl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in X.
- 9) a sb \hat{g} -closed set[4] if sCl(A) \subseteq U whenever A \subseteq U and U is b \hat{g} -open in X

Definition 2.3: A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called a

- 1. continuous[21] if $f^{-1}(V)$ is closed in X for every closed set V in Y.
- 2. α -continuous[6] if $f^{-1}(V)$ is α -closed in X for every closed set V in Y.
- 3. b-continuous[6] if $f^{-1}(V)$ is b-closed in X for every closed set V in Y.
- 4. regular continuous[12] if $f^{-1}(V)$ is regular closed in X for every closed set V in Y.
- 5. sg-continuous[18] if $f^{-1}(V)$ is sg-closed in X for every closed set V in Y.
- 6. gs-continuous[7] if $f^{-1}(V)$ is gs-closed in X for every closed set V in Y.
- 7. gb-continuous[24] if $f^{-1}(V)$ is gb-closed in X for every closed set V in Y.
- 8. g*b-continuous[24] if $f^{-1}(V)$ is g*b-closed in X for every closed set V in Y.

9. rb-continuous[12] if $f^{-1}(V)$ is rb-closed in X for every closed set V in Y.

10. bĝ-continuous[19] if $f^{-1}(V)$ is bĝ-closed in X for every closed set V in Y.

Definition 2.4: A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called a

- 1. open map[21] if f(V) is open in (Y,σ) for every open set V in (X,τ) .
- 2. α open map[6] if f(V) is α open in (Y, σ) for every open set V in (X, τ).
- 3. b open map[6] if f(V) is b open in (Y,σ) for every open set V in (X,τ) .
- 4. regular open map[12] if f(V) is regular open in (Y,σ) for every open set V in (X,τ) .
- 5. sg open map[18] if f(V) is sg open in (Y,σ) for every open set V in (X,τ) .
- 6. gs open map[7] if f(V) is gs open in (Y,σ) for every open set V in (X,τ) .
- 7. gb open map[24] if f(V) is gb open in (Y,σ) for every open set V in (X,τ) .
- 8. g^*b open map[24] if f(V) is g^*b open in (Y,σ) for every open set V in (X,τ) .
- 9. rb open map[12] if f(V) is rb open in (Y,σ) for every open set V in (X,τ) .
- 10. bĝ open map[19] if f(V) is bĝ open in (Y,σ) for every open set V in (X,τ) .

Definition 2.5: A bijection f: $(X,\tau) \rightarrow (Y,\sigma)$ is called a

- 1. homeomorphism[21] if f is both continuous map and open map
- 2. b-homeomorphism[6] if f is both b-continuous map and b-open map
- 3. gs homeomorphism[7] if f is both gs continuous map and gs open map
- 4. gb homeomorphism[24] if f is both gb continuous map and gb open map
- 5. g*b homeomorphism[24] if f is both g*b continuous map and g*b open map
- 6. $b\hat{g}$ homeomorphism[9] if f is both $b\hat{g}$ continuous map and $b\hat{g}$ open map.

Definition 2.6: A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be b \hat{g} – irresolute function if the inverse image of every b \hat{g} -closed set in (Y,σ) is b \hat{g} -closed in (X,τ) .

Remark 2.7: The family of all $sb\hat{g}$ – open subsets of a space X is denoted by $sb\hat{g}$ -O(X). The family of all $sb\hat{g}$ – closed subsets of a space X is denoted by $sb\hat{g}$ -C(X).

3. sbĝ-CONTINUOUS AND sbĝ – IRRESOLUTE FUNCTIONS

We introduce the following definitions.

Definition 3.1: A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be $sb\hat{g}$ – continuous map if the inverse image of every closed set in (Y,σ) is $sb\hat{g}$ -closed in (X,τ) .

Examplel 3.2: Let $X = Y = \{a,b,c\}$ $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}\}$ Define a map f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c.

Then f is sbg-continuous, since the inverse images of closed sets $\{c\}, \{b,c\}$ in (Y,σ) are $\{c\}, \{b,c\}$ respectively which are sbg-closed in (X,τ) .

Definition 3.3: A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be $sb\hat{g}$ – irresolute map if the inverse image of every $sb\hat{g}$ -closed set in (Y,σ) is $sb\hat{g}$ -closed in (X,τ) .

Examplel 3.4: Let $X = Y = \{a,b,c\}$

 $\tau = \{ X, \phi, \{a\}, \{b\}, \{a,b\} \} \text{ and } \sigma = \{ Y, \phi, \{a\}, \{b,c\} \}$

Define a map f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c.

Then f is sb \hat{g} -irresolute map, since the inverse images of sb \hat{g} -closed sets {a}, {b,c} in (Y, σ) are {a}, {b,c} respectively which are sb \hat{g} -closed sets in (X, τ).

Proposition 3.5:

- a) Every continuous map is sbg continuous.
- b) Every α continuous map is sb \hat{g} continuous.
- c) Every regular continuous map is sbĝ continuous.
- d) Every rb continuous map is sbĝ continuous.

Proof:

- a) Let f: (X,τ) → (Y,σ) be continuous. Let V be a closed set in (Y,σ). Since f is continuous, f⁻¹(V) is closed set in (X,τ). By Proposition 3.4 in [4], f⁻¹(V) is sbĝ-closed set in (X,τ). Therefore, f is sbĝ continuous.
- b) Let f: $(X,\tau) \to (Y,\sigma)$ be α continuous. Let V be a closed set in (Y,σ) . Since f is α continuous, $f^{-1}(V)$ is α closed set in (X,τ) . By Proposition 3.7 in [4], $f^{-1}(V)$ is sbg-closed set in (X,τ) . Therefore, f is sbg continuous.
- c) Let f: (X,τ) → (Y,σ) be α continuous. Let V be a closed set in (Y,σ). Since f is regular continuous, f⁻¹(V) is regular closed set in (X,τ). By Proposition 3.9 in [4], f⁻¹(V) is sbĝ-closed set in (X,τ). Therefore, f is sbĝ continuous.
- d) Let f: (X,τ) → (Y,σ) be rb continuous. Let V be a closed set in (Y,σ). Since f is rb continuous, f⁻¹(V) is rb closed set in (X,τ). By Proposition 3.19 in [4],f⁻¹(V) is sbg-closed set in (X,τ). Therefore, f is sbg continuous.

The following examples show that the converse of the above proposition need not be true.

Example 3.6:

- a) Let $X = Y = \{a,b,c\}, \tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}, \{a,c\}\}$. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be the identity map. Since the inverse image of a closed set $\{b\}$ in (Y,σ) is $\{b\}$ which is sbg closed but not closed in (X,τ) , f is sbg continuous but not continuous.
- b) Let $X = Y = \{a,b,c\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a,c\}, \{b,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b,c\}\}$. Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = b, f(b) = a, f(c) = b. Since the inverse image of a closed set $\{a\}$ in (Y,σ) is $\{b\}$ which is $sb\hat{g}$ – closed but not α - closed in (X,τ) , f is $sb\hat{g}$ – continuous but not α – continuous.

- c) Let $X = Y = \{a,b,c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a,c\}\}\)$ and $\sigma = \{Y, \phi, \{b\}\}$. Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = b, f(b) = a, f(c) = c. Since the inverse image of a closed set $\{a,c\}\)$ in (Y,σ) is $\{b,c\}\)$ which is $sb\hat{g}$ closed but not regular closed in (X,τ) , f is $sb\hat{g}$ continuous but not regular continuous.
- d) Let $X = Y = \{a,b,c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}, \{a,c\}\}$. Define a function $f:(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c. Here, $sb\hat{g}$ – closed set in X are X, ϕ , $\{a\}, \{b\}, \{c\}, \{a,c\}, \{b,c\}, \text{ and } rb$ – closed set in X are X, ϕ , $\{a,c\}, \{b,c\}$. Since the inverse image of a closed set $\{b\}$ in (Y,σ) is $\{b\}$ which is $sb\hat{g}$ – closed but not rb - closed in (X,τ) , f is $sb\hat{g}$ – continuous but not rb – continuous.

Proposition 3.7: `

- a. Every sbĝ continuous is b continuous.
- b. Every sbĝ continuous is sg continuous.
- c. Every sbĝ continuous is gs continuous.
- d. Every sbĝ continuous is gb continuous.
- e. Every sbĝ continuous is g*b continuous.
- f. Every sbĝ continuous is bĝ continuous.

Proof:

- a) Let f: (X,τ) → (Y,σ) be sbĝ continuous. Let V be a closed set in (Y,σ). Since f is sbĝ continuous, f⁻¹(V) is sbĝ closed set in (X,τ). By Proposition 3.11 in [4], f⁻¹(V) is b closed set in (X,τ). Therefore, f is b continuous.
- b) Let f: (X,τ) → (Y,σ) be sbĝ continuous. Let V be a closed set in (Y,σ). Since f is sbĝ continuous, f⁻¹(V) is sbĝ closed set in (X,τ). By Proposition 3.13 in [4], f⁻¹(V) is sg closed set in (X,τ). Therefore, f is sg continuous.
- c) Let f: (X,τ) → (Y,σ) be sbĝ continuous. Let V be a closed set in (Y,σ). Since f is sbĝ continuous, f⁻¹(V) is sbĝ closed set in (X,τ). By Proposition 3.15 in [4], f⁻¹(V) is gs closed set in (X,τ). Therefore, f is gs continuous.
- d) Let f: (X,τ) → (Y,σ) be sbĝ continuous. Let V be a closed set in (Y,σ). Since f is sbĝ continuous, f⁻¹(V) is sbĝ closed set in (X,τ). By Proposition 3.15 in [4], f⁻¹(V) is gs closed set in (X,τ). Therefore, f is gs continuous.
- e) Let f: (X,τ) → (Y,σ) be sbĝ continuous. Let V be a closed set in (Y,σ). Since f is sbĝ continuous, f⁻¹(V) is sbĝ closed set in (X,τ). By Proposition 3.17 in [4], f⁻¹(V) is gb closed set in (X,τ). Therefore, f is gb continuous.
- f) Let f: (X,τ) → (Y,σ) be sbĝ continuous. Let V be a closed set in (Y,σ). Since f is sbĝ continuous, f⁻¹(V) is sbĝ closed set in (X,τ). By Proposition 3.21 in [4], f⁻¹(V) is g*b closed set in (X,τ). Therefore, f is g*b continuous.
- g) Let f: (X,τ) → (Y,σ) be sbĝ continuous. Let V be a closed set in (Y,σ). Since f is sbĝ continuous, f⁻¹(V) is sbĝ closed set in (X,τ). By Proposition 3.23 in [4], f⁻¹(V) is bĝ closed set in (X,τ). Therefore, f is bĝ continuous.

The following examples show that the converse of the above proposition need not be true.

Example 3.8:

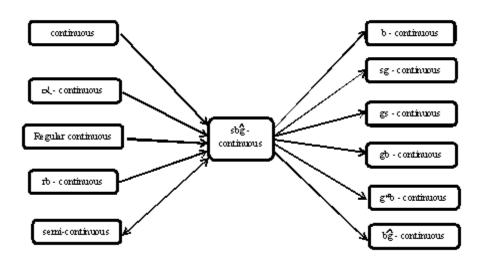
a) Let $X = Y = \{a, b, c\},\$ $\tau = \{X, \phi, \{a\}, \{b,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}\}$. Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c. $sb\hat{g}-C(X) = \{X, \phi, \{a\}, \{b,c\}\},\$ $b-C(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ Since the inverse image of a closed set $\{c\}$ in (Y,σ) is $\{c\}$ which is b – closed but not sbg - closed in (X,τ) , f is b – continuous but not sbg – continuous. b) Let $X = Y = \{a, b, c\},\$ $\tau = \{X, \phi, \{c\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}\}$. Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c. $sb\hat{g}-C(X) = \{X, \phi, \{c\}, \{a,b\}\},\$ $sg-C(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ Since the inverse image of a closed set $\{b,c\}$ in (Y,σ) is $\{b,c\}$ which is sg – closed but not sb \hat{g} - closed in (X, τ), f is sg – continuous but not sb \hat{g} – continuous. c) Let $X = Y = \{a, b, c\},\$ $\tau = \{X, \phi, \{b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}.$ Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c. $sb\hat{g}$ -C(X) = {X, ϕ , {a}, {c}, {a,c}}, $gs-C(X) = \{X, \phi, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ Since the inverse image of a closed set $\{b,c\}$ in (Y,σ) is $\{b,c\}$ which is gs – closed but not sb \hat{g} - closed in (X, τ), f is gs – continuous but not sb \hat{g} – continuous. d) Let $X = Y = \{a, b, c\},\$ $\tau = \{X, \phi, \{a\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$. Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c. $sb\hat{g}$ -C(X) = {X, ϕ , {b}, {c}, {b,c}}, $gb-C(X) = \{X, \phi, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}$ Since the inverse image of a closed set $\{a,c\}$ in (Y,σ) is $\{a,c\}$ which is gb – closed but not sb \hat{g} - closed in (X, τ), f is gb – continuous but not sb \hat{g} – continuous. e) Let $X = Y = \{a, b, c\},\$ $\tau = \{X, \phi, \{a\}, \{b,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}, \{a,c\}\}$. Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c. $sb\hat{g}-C(X) = \{X, \phi, \{a\}, \{b,c\}\},\$ $g*b-C(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ Since the inverse image of a closed set $\{b\}$ in (Y,σ) is $\{b\}$ which is g^*b – closed but not $sb\hat{g}$ - closed in (X,τ) , f is g^*b – continuous but not $sb\hat{g}$ – continuous. Let $X = Y = \{a, b, c\},\$ f) $\tau = \{X, \phi, \{c\}, \{a, b\}\}\$ and $\sigma = \{Y, \phi, \{a\}\}.$ Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c. $sb\hat{g}-C(X) = \{X, \phi, \{c\}, \{a,b\}\},\$ $b\hat{g}$ -C(X) = {X, ϕ , {a}, {b}, {c}, {a,b}, {a,c}, {b,c}} Since the inverse image of a closed set $\{b\}$ in (Y,σ) is $\{b\}$ which is $b\hat{g}$ – closed but not $sb\hat{g}$ - closed in (X,τ) , f is $b\hat{g}$ – continuous but not $sb\hat{g}$ – continuous.

Proposition 3.9: If f: $(X,\tau) \to (Y,\sigma)$ is a semi – continuous map if and only if f is a sb \hat{g} – continuous map.

Proof: Let V be a closed set in (Y,σ) . Since f is semi-continuous, then $f^{-1}(V)$ is semi-closed in (X,τ) . By proposition 3.6 in [4], $f^{-1}(V)$ is sbĝ- closed in (X,τ) . Hence, f is sbĝ – continuous.

Conversely, Let V be a closed set in (Y,σ) . Since f is sb \hat{g} - continuous, then $f^{-1}(V)$ is sb \hat{g} -closed in (X,τ) . By proposition 3.6 in [4], $f^{-1}(V)$ is semi - closed in (X,τ) . Hence, f is semi - continuous.

Remark 3.10: The following diagram shows the relationships of sb \hat{g} -continuous functions with other known existing functions. A \rightarrow B represents A implies B but not conversely.



Proposition 3.11: Every sbg – irresolute is sbg – continuous.

Proof: Let f: $(X,\tau) \to (Y,\sigma)$ be sb \hat{g} – irresolute. Let V be closed in (Y,σ) . Since every closed set is sb \hat{g} -closed, V is sb \hat{g} -closed in (Y,σ) . Since f is sb \hat{g} – irresolute, $f^{-1}(V)$ is a sb \hat{g} -closed set in (X,τ) . Hence, f is sb \hat{g} – continuous.

The following example shows that the converse of the above proposition need not be true.

Example 3.12: Let $X = Y = \{a,b,c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}\}$ Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c. $sb\hat{g}$ -C(X) = $\{X, \phi, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}$, $sb\hat{g}$ -C(Y) = $\{X, \phi, \{a\}, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}$, C(X) = $\{X, \phi, \{c\}, \{a,c\}, \{b,c\}\}$ Here, f is $sb\hat{g}$ - continuous. But, inverse image of a $sb\hat{g}$ -closed set $\{a\}$ in Y is $\{a\}$, which is not $sb\hat{g}$ -closed set in X. Hence, f is not $sb\hat{g}$ - irresolute.

Proposition 3.13: Every sbĝ – continuous is bĝ – irresolute.

Proof: Let f: $(X,\tau) \to (Y,\sigma)$ be sb \hat{g} – continuous. Let V be closed in (Y,σ) . Since every closed set is b \hat{g} -closed, V is b \hat{g} -closed in (Y,σ) . Since f is sb \hat{g} – continuous, $f^{-1}(V)$ is a sb \hat{g} -closed set in (X,τ) . By Proposition 3.23 in [4], $f^{-1}(V)$ is b \hat{g} -closed set in (X,τ) . Hence, f is b \hat{g} – irresolute.

The following example shows that the converse of the above proposition need not be true.

Example 3.14:Let $X = Y = \{a,b,c\},\$ $\tau = \{X, \phi, \{a,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}, \{a,c\}\}\$ Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c. sbĝ-C(X) = $\{X, \phi, \{b\}, \{c\}, \{a,c\}, \{b,c\}\},\$ bĝ-C(X) = $\{X, \phi, \{a\}, \{b\}, \{c\}, \{a,c\}, \{b,c\}\},\$ bĝ-C(Y) = $\{X, \phi, \{b\}, \{c\}, \{b,c\}\}$ C(Y) = $\{X, \phi, \{b\}, \{c\}, \{b,c\}\}$ Here f is bĝ – irresolute But inverse image of a closed set $\{b\}$

Here, f is $b\hat{g}$ – irresolute. But, inverse image of a closed set {b,c} in Y is {b,c} which is not sb \hat{g} -closed set in X. Therefore, f is not sb \hat{g} – continuous.

Proposition 3.15: Let f: $(X,\tau) \to (Y,\sigma)$ be a sb \hat{g} – continuous map. If (X,τ) is $T_{sb\hat{g}}$ – space then f is continuous.

Proof: Let f: $(X,\tau) \to (Y,\sigma)$ be sb \hat{g} – continuous. Let V be a closed set in (Y,σ) . Since f is sb \hat{g} -continuous, $f^{-1}(V)$ is sb \hat{g} -closed set in (X,τ) . Since (X,τ) is $T_{sb\hat{g}}$ – space, $f^{-1}(V)$ is closed set in (X,τ) . Therefore, f is continuous.

Proposition 3.16: Let f: $(X,\tau) \to (Y,\sigma)$ be a sbg – continuous map. If (X,τ) is T^{α}_{sbg} – space then f is α - continuous.

Proof: Let f: $(X,\tau) \to (Y,\sigma)$ be sb \hat{g} – continuous. Let V be a closed set in (Y,σ) . Since f is sb \hat{g} -continuous, $f^{-1}(V)$ is sb \hat{g} -closed set in (X,τ) . Since (X,τ) is $T^{\alpha}{}_{sb\hat{g}}$ – space, $f^{-1}(V)$ is α -closed set in (X,τ) . Therefore, f is α - continuous.

4. sbĝ – OPEN MAPS AND sbĝ – CLOSED MAPS

We introduce the following definitions.

Definition 4.1: Let X and Y be two topological spaces. A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is called sbĝ – open map if for each open set V of X, f(V) is sbĝ – open set in Y.

Definition 4.2: Let X and Y be two topological sapces. A map $f: (X,\tau) \to (Y,\sigma)$ is called $sb\hat{g}$ – closed map if for each closed set V of X, f(V) is $sb\hat{g}$ – closed set in Y.

Example 4.3: Let $X = Y = \{a,b,c\}$ $\tau = \{X, \phi, \{a,c\}\}$ and $\sigma = \{Y, \phi, \{b\}\}$ Define a map f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = b, f(b) = a, f(c) = c. Then f is sbĝ – open map, since the image of a open set $\{a,c\}$ in (X,τ) is $\{b,c\}$ which is sbĝopen set in (Y,σ) .

Proposition 4.4:

- a) Every open map is sbĝ open map.
- b) Every α open map is sb \hat{g} open map.
- c) Every regular open map is sbĝ open map.
- d) Every rb open map is sbĝ open map.

Proof:

a) Let f: $(X,\tau) \to (Y,\sigma)$ be an open map and V be an open set in X. Since f is an open map f(V) is an open set in Y. By Proposition 3.4 in [4], f(V) is a sbg – open set in (Y,σ) . Therefore, f is sbg – open map.

b) Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be an α - open map and V be an open set in X. Since f is an α - open map, f(V) is an α - open set in Y. By Proposition 3.7 in [4], f(V) is a sbg – open set in (Y,σ) . Therefore, f is sbg – open map.

c) Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be regular open map and V be an open set in X. Since f is regular open map, f(V) is an regular open set in Y. By Proposition 3.9 in [4], f(V) is a sb \hat{g} – open set in (Y,σ) . Therefore, f is sb \hat{g} – open map.

d) Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be an rb - open map and V be an open set in X. Since f is an rb - open map, f(V) is an rb - open set in Y. By Proposition 3.19 in [4], f(V) is a sbg – open set in (Y,σ) . Therefore, f is sbg – open map.

The following examples show that the converse of the above proposition need not be true.

Example 4.5:

a) Let X = Y = {a,b,c}, τ = {X, φ, {a,c}}, σ = {Y, φ, {a}, {b}, {a,b}} Define a function f: (X,τ) → (Y,σ) by f(a) = a, f(b) = b, f(c) = c O(X) = {X,φ, {a,c}} O(Y) = {Y, φ, {a}, {b}, {a,b}} sbĝ-O(Y) = {Y,φ, {a}, {b}, {a,c}, {b,c}} Since the image of an open set {a,c} in (X,τ) is {a,c} which is sbĝ – open set in (Y,σ) but not open set in (Y,σ), f is sbĝ – open map, but not open map.

b) Let $X = Y = \{a,b,c\}, \tau = \{X, \phi, \{c\}, \{a,b\}\}, \sigma = \{Y, \phi, \{a\}, \{c\}, \{a,c\}, \{b,c\}\}$

Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = c, f(c) = c

 $O(X) = \{X, \phi, \{c\}, \{a, b\}\}$

 $\alpha \text{-} O(Y) = \{Y, \phi, \{a\}, \{c\}, \{b,c\}\}$

 $sb\hat{g}-O(Y) = \{Y,\phi,\{a\},\{c\},\{a,c\},\{b,c\}\}$

Since the image of an open set $\{a,b\}$ in (X,τ) is $\{a,c\}$ which is $sb\hat{g}$ – open set in (Y,σ) but not an α - open set in (Y,σ) , f is $sb\hat{g}$ – open map, but not an α - open map.

c) Let $X = Y = \{a,b,c\}, \tau = \{X, \phi, \{a\}, \{a,b\}\}, \sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c $O(X) = \{X,\phi,\{a\},\{a,b\}\}$ $rO(Y) = \{Y, \phi, \{b\}, \{a,c\}\}$ $sb\hat{g}$ -O(Y) = $\{Y,\phi,\{a\},\{b\},\{a,b\},\{a,c\}\}$

Since the image of open sets $\{a\},\{a,b\}$ in (X,τ) are $\{a\},\{a,b\}$ which are $sb\hat{g}$ – open sets in (Y,σ) but not regular open sets in (Y,σ) , f is $sb\hat{g}$ – open map, but not regular open map.

d) Let $X = Y = \{a,b,c\}, \tau = \{X, \phi, \{a,c\}\}, \sigma = \{Y, \phi, \{a\}, \{a,c\}\}$

Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c

- $O(X) = \{X, \phi, \{a, c\}\}$
- $rb-O(Y) = \{Y, \phi, \{a\}, \{a,b\}\}$
- $sb\hat{g}-O(Y) = \{Y, \phi, \{a\}, \{a, b\}, \{a, c\}\}$

Since the image of an open set $\{a,c\}$ in (X,τ) is $\{a,c\}$ which is $sb\hat{g}$ – open set in (Y,σ) but not rb - open set in (Y,σ) , f is $sb\hat{g}$ – open map, but not rb - open map.

Proposition 4.6:

- a. Every sbĝ- open map is b open map
- b. Every sbĝ open map is sg open map
- c. Every sbĝ open map is gs open map
- d. Every sbĝ open map is gb open map
- e. Every sbĝ open map is g*b open map
- f. Every sbĝ open map is bĝ open map.

Proof:

- a. Let f: (X,τ) → (Y,σ) be a sbĝ open map and V be an open set in X. Since f is sbĝ open map, f(V) is sbĝ open set in Y. By Proposition 3.11 in [4], f(V) is b-open set in (Y,σ). Therefore, f is b open map.
- b. Let f: (X,τ) → (Y,σ) be a sbĝ open map and V be an open set in X. Since f is sbĝ open map, f(V) is sbĝ open set in Y. By Proposition 3.13 in [4], f(V) is sg-open set in (Y,σ). Therefore, f is sg open map.
- c. Let f: (X,τ) → (Y,σ) be a sbĝ open map and V be an open set in X. Since f is sbĝ open map, f(V) is sbĝ open set in Y. By Proposition 3.15 in [4], f(V) is gs open set in (Y,σ). Therefore, f is gs open map.
- d. Let f: (X,τ) → (Y,σ) be a sbĝ open map and V be an open set in X. Since f is sbĝ open map, f(V) is sbĝ open set in Y. By Proposition 3.17 in [4], f(V) is gb open set in (Y,σ). Therefore, f is gb open map.
- e. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a sb \hat{g} open map and V be an open set in X. Since f is sb \hat{g} open map, f(V) is sb \hat{g} open set in Y. By Proposition 3.21 in [4], f(V) is g*b open set in (Y,σ) . Therefore, f is g*b open map.
- f. Let f: (X,τ) → (Y,σ) be a sbĝ open map and V be an open set in X. Since f is sbĝ open map, f(V) is sbĝ open set in Y. By Proposition 3.23 in [4], f(V) is bĝ open set in (Y,σ). Therefore, f is bĝ open map.

The following examples show that the converse of the above proposition need not be true.

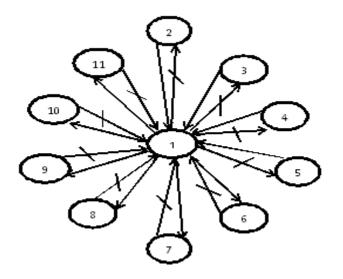
Example 4.7:

a. Let $X = Y = \{a,b,c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}, \sigma = \{Y, \phi, \{a\}, \{b,c\}\}$ Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c

 $O(X) = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ $b-O(Y) = \{Y, \phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ $sb\hat{g}-O(Y) = \{Y, \phi, \{a\}, \{b, c\}\}$ Since the image of open sets $\{b\}, \{a,b\}, \{a,c\}$ in (X,τ) are $\{b\}, \{a,b\}, \{a,c\}$ respectively which are b – open sets in (Y,σ) but not sbg - open sets in (Y,σ) , f is b – open map, but not sbĝ - open map. b. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}\}, \sigma = \{Y, \phi, \{c\}, \{a, b\}\}$ Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c $O(X) = \{X, \phi, \{b\}\}$ $sg-O(Y) = \{Y, \phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ $sb\hat{g}-O(Y) = \{Y, \phi, \{c\}, \{a, b\}\}$ Since the image of an open set $\{b\}$ in (X,τ) is $\{b\}$ which is sg – open set in (Y,σ) but not $sb\hat{g}$ - open set in (Y,σ) , f is sg – open map, but not $sb\hat{g}$ - open map. c. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}, \sigma = \{Y, \phi, \{a, c\}\}$ Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c $O(X) = \{X, \phi, \{a\}\}$ $gs-O(Y) = \{Y, \phi, \{a\}, \{c\}, \{a,c\}\}$ $sb\hat{g}-O(Y) = \{Y, \phi, \{a, c\}\}$ Since the image of an open set $\{a\}$ in (X,τ) is $\{a\}$ which is gs – open set in (Y,σ) but not sbĝ - open set in (Y,σ) , f is gs – open map, but not sbĝ - open map. d. Let $X = Y = \{a,b,c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}, \sigma = \{Y, \phi, \{a\}\}$ Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c $O(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ $gb-O(Y) = \{Y, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$ $sb\hat{g}-O(Y) = \{Y, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ Since the image of an open set $\{b\}$ in (X,τ) is $\{b\}$ which is gb – open set in (Y,σ) but not $sb\hat{g}$ - open set in (Y,σ) , f is gb – open map, but not $sb\hat{g}$ - open map. e. Let $X = Y = \{a,b,c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}, \sigma = \{Y, \phi, \{a\}, \{a,b\}\}$ Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c $O(X) = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ $g*b-O(Y) = \{Y, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ $sb\hat{g}-O(Y) = \{Y, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ Since the image of an open set {b} in (X,τ) is {b} which is g^*b – open set in (Y,σ) but not sb \hat{g} - open set in (Y, σ), f is g^*b - open map, but not sb \hat{g} - open map. Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}, \sigma = \{Y, \phi, \{b\}\}$ f. Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c $O(X) = \{X, \phi, \{a\}, \{a,b\}, \{a,c\}\}$ $b\hat{g}-O(Y) = \{Y, \phi, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$

 $sb\hat{g}-O(Y) = \{Y,\phi,\{a\},\{c\},\{a,c\}\}\$ Since the image of an open set $\{a,b\}$ in (X,τ) is $\{a,b\}$ which is $b\hat{g}$ – open set in (Y,σ) but not $sb\hat{g}$ - open set in (Y,σ) , f is $b\hat{g}$ – open map, but not $sb\hat{g}$ - open map.

Remark 4.8: The following diagram shows the relationships of sbĝ – open map with other known existing open maps. A B represents A implies B but not conversely.



sbĝ - open map
 Regular open map
 sg - open map
 g*b - open map

2. open map 5. rb – open map 8. gs – open map 11. bĝ - open map 3. α – open map
6. b – open map
9. gb – open map

5. sbĝ – HOMEOMORPHISM

We introduce the following definition.

Definition 5.1: A bijection f: $(X,\tau) \rightarrow (Y,\sigma)$ is called a sb \hat{g} – homeomorphism if f is both sb \hat{g} – continuous map and sb \hat{g} - open map. That is, Both f and f⁻¹are sb \hat{g} – continuous map.

Example 5.2: Let $X = Y = \{a,b,c\}$ $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{b\}\}$ Define a map f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = b, f(b) = c, f(c) = a $sb\hat{g} - C(X) = \{X,\phi,\{b\},\{c\},\{b,c\}\}$ $sb\hat{g} - O(Y) = \{Y,\phi,\{b\},\{a,b\},\{b,c\}\}$ $C(Y) = \{Y,\phi,\{a,c\}\}$ $O(X) = \{X,\phi,\{a\}\}$

Here, the inverse image of a closed set $\{a,c\}$ in Y is $\{b,c\}$ which is $sb\hat{g}$ – closed set in X and the image of an open set $\{a\}$ in X is $\{b\}$ which is $sb\hat{g}$ –open in Y. Hence, f is $sb\hat{g}$ – homeomorphism.

Proposition 5.3:

- a) Every homeomorphism is sbg homeomorphism
- b) Every sbĝ homeomorphism is b homeomorphism
- c) Every sbĝ homeomorphism is gs homeomorphism
- d) Every sbĝ homeomorphism is gb homeomorphism
- e) Every $sb\hat{g}$ homeomorphism is g*b homeomorphism

f) Every sbĝ –homeomorphism is bĝ – homeomorphism

Proof:

- a) Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a homeomorphism. Then f is continuous and open map. By Proposition 3.5(a) and Proposition 4.4(a), f is $sb\hat{g}$ continuous and $sb\hat{g}$ open map. Hence, f is $sb\hat{g}$ homeomorphism.
- b) Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a sb \hat{g} homeomorphism. Then f is sb \hat{g} continuous and sb \hat{g} open map. By Proposition 3.7(a) and Proposition 4.6(a), f is b continuous and b open map. Hence, f is b homeomorphism.
- c) Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a sbĝ homeomorphism. Then f is sbĝ- continuous and sbĝ open map. By Proposition 3.7(c) and Proposition 4.6(c), f is gs continuous and gs open map. Hence, f is gs homeomorphism.
- d) Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a sb \hat{g} homeomorphism. Then f is sb \hat{g} continuous and sb \hat{g} open map. By Proposition 3.7(d) and Proposition 4.6(d), f is gb continuous and gb open map. Hence, f is gb homeomorphism.
- e) Let f: (X,τ) → (Y,σ) be a sbĝ homeomorphism. Then f is sbĝ- continuous and sbĝ open map. By Proposition 3.7(e) and Proposition 4.6(e), f is g*b continuous and g*b open map. Hence, f is g*b homeomorphism.
- f) Let f: (X,τ) → (Y,σ) be a sbĝ homeomorphism. Then f is sbĝ- continuous and sbĝ open map. By Proposition 3.7(f) and Proposition 4.6(f), f is bĝ continuous and bĝ open map. Hence, f is bĝ homeomorphism.

The following examples show that the converse of the above proposition need not be true.

Example 5.4:

a) Let $X = Y = \{a,b,c\}, \tau = \{X, \phi, \{a,c\}\}, \sigma = \{Y, \phi, \{a\}, \{a,b\}, \{a,c\}\}$ Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c $sb\hat{g} - C(X) = \{X,\phi,\{b\},\{c\},\{b,c\}\}$ $sb\hat{g} - O(Y) = \{Y,\phi,\{a\},\{a,b\},\{a,c\}\}$ $C(Y) = \{Y,\phi,\{b\},\{c\},\{b,c\}\}$ $O(X) = \{X,\phi,\{a,c\}\}$

Here, the inverse image of closed sets $\{c\}, \{b,c\}$ in Y are $\{c\}, \{b,c\}$ which are $sb\hat{g}$ – closed in X but not closed in X. So f is $sb\hat{g}$ – continuous but not continuous. Also, the image of an open set $\{a,c\}$ in X is $\{a,c\}$ which is $sb\hat{g}$ – open set in Y. Thus, f is $sb\hat{g}$ – open map. Therefore, f is $sb\hat{g}$ – homeomorphism, but not a homeomorphism.

b) Let $X = Y = \{a,b,c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}, \sigma = \{Y, \phi, \{a\}, \{b,c\}\}$ Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = b, f(b) = a, f(c) = c $sb\hat{g} - C(X) = \{X,\phi, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}$ $sb\hat{g} - O(Y) = \{Y,\phi, \{a\}, \{b,c\}\}$ $C(Y) = \{Y,\phi, \{a\}, \{b,c\}\}$ $O(X) = \{X,\phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ $b - C(X) = \{X,\phi, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}$ $b - O(Y) = \{Y,\phi, \{a\}, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}$

Here, the image of open sets $\{a\},\{a,b\}$ are $\{b\},\{a,b\}$ which are b-open sets in Y but not sb \hat{g} – open set in Y. So f is b – open map but not sb \hat{g} – open map. Also, the inverse image of a closed sets $\{a\},\{b,c\}$ in Y are $\{b\},\{a,c\}$ which are b – closed in X. Thus, f is b – continuous map. Therefore, f is b – homeomorphism but not sb \hat{g} – homeomorphism. c) Let X = Y = $\{a,b,c\}, \tau = \{X, \phi, \{a\}\}, \sigma = \{Y, \phi, \{a,c\}\}$

Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c $sb\hat{g} - C(X) = \{X,\phi,\{b\},\{c\},\{b,c\}\}$ $sb\hat{g} - O(Y) = \{Y,\phi,\{a,c\}\}$ $C(Y) = \{Y,\phi,\{a,c\}\}$ $O(X) = \{X,\phi,\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\}\}$ $gs - C(X) = \{X,\phi,\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\}\}$ $gs - O(Y) = \{Y,\phi,\{a\},\{c\},\{a,c\}\}$

Here, the image of an open set $\{a\}$ is $\{a\}$ which is gs-open set in Y but not $sb\hat{g}$ – open set in Y. So f is gs – open map but not $sb\hat{g}$ – open map. Also the inverse image of a closed set $\{b\}$ in Y is $\{b\}$ which is gs – closed in X. Thus, f is gs – continuous map. Therefore, f is gs – homeomorphism but not $sb\hat{g}$ – homeomorphism.

d) Let
$$X = Y = \{a,b,c\}, \tau = \{X, \phi, \{a\}, \{a,b\}\}, \sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$$

Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by $f(a) = a, f(b) = b, f(c) = c$
 $sb\hat{g} - C(X) = \{X,\phi,\{b\},\{c\},\{b,c\}\}$
 $sb\hat{g} - O(Y) = \{Y,\phi,\{a\},\{b\},\{a,b\},\{a,c\}\}$
 $C(Y) = \{Y,\phi,\{b\},\{c\},\{a,c\},\{b,c\}\}$
 $O(X) = \{X,\phi,\{a\},\{a,b\}\}$
 $gb - C(X) = \{X,\phi,\{b\},\{c\},\{a,c\},\{b,c\}\}$
 $gb - O(Y) = \{Y,\phi,\{a\},\{b\},\{c\},\{a,c\},\{b,c\}\}$
Here, the inverse images of a closed set $\{a,c\}$ in Y is $\{a,c\}$ which is ch - close

Here, the inverse image of a closed set $\{a,c\}$ in Y is $\{a,c\}$ which is gb - closed set in X but not $sb\hat{g} - closed$ set in X. So f is gb - continuous map but not $sb\hat{g} - continuous$ map. Also, the image of the open sets $\{a\}$, $\{a,b\}$ in X are $\{a\}$, $\{a,b\}$ which are gb - open set in Y. Thus, f is gb - open map. Therefore, f is gb - homeomorphism but not $sb\hat{g} - homeomorphism$.

e) Let $X = Y = \{a,b,c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}, \sigma = \{Y, \phi, \{a\}, \{a,b\}\}$ Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c $sb\hat{g} - C(X) = \{X,\phi,\{b\},\{c\},\{a,c\},\{b,c\}\}$ $sb\hat{g} - O(Y) = \{Y,\phi,\{a\},\{a,b\},\{a,c\}\}$ $C(Y) = \{Y,\phi,\{c\},\{b,c\}\}$ $O(X) = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,c\}\}$ $g^*b - C(X) = \{X,\phi,\{b\},\{c\},\{a,c\},\{b,c\}\}$ $g^*b - O(Y) = \{Y,\phi,\{a\},\{b\},\{a,c\},\{a,c\}\}$ Here, the image of an open set $\{b\}$ is $\{b\}$ which is σ^*b – open set in X by

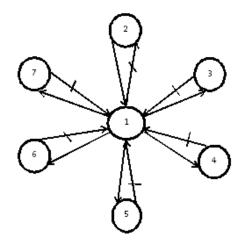
Here, the image of an open set $\{b\}$ is $\{b\}$ which is g^*b – open set in Y but not $sb\hat{g}$ – open set in Y. So f is g^*b – open map but not $sb\hat{g}$ – open map. Also, the inverse image of a closed sets $\{c\},\{b,c\}$ in Y are $\{c\},\{b,c\}$ which are g^*b – closed sets in X. Thus f is g^*b – continuous map. Therefore, f is g^*b – homeomorphism but not $sb\hat{g}$ – homeomorphism.

f) Let $X = Y = \{a,b,c\}, \tau = \{X, \phi, \{c\}, \{a,b\}\}, \sigma = \{Y, \phi, \{a\}\}$ Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c $sb\hat{g} - C(X) = \{X,\phi,\{c\},\{a,b\}\}$ $sb\hat{g} - O(Y) = \{Y,\phi,\{a\},\{a,b\},\{a,c\}\}$

$$\begin{split} C(Y) &= \{ Y, \phi, \{b, c\} \} \\ O(X) &= \{ X, \phi, \{c\}, \{a, b\} \} \\ b\hat{g} - C(X) &= \{ X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\} \} \\ b\hat{g} - O(Y) &= \{ Y, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\} \} \end{split}$$

Here, the inverse image of a closed set $\{b,c\}$ in Y is $\{b,c\}$ which is $b\hat{g}$ – closed set in X but not $sb\hat{g}$ – closed set in X. So, f is $b\hat{g}$ – continuous map but not $sb\hat{g}$ – continuous map. Also, the image of an open set $\{a\}$ in X is $\{a\}$ which is $b\hat{g}$ –open set in Y but not $sb\hat{g}$ – open set in Y. Thus, f is $b\hat{g}$ – open map but not $sb\hat{g}$ – open map. Therefore, f is $b\hat{g}$ – homeomorphism but not $sb\hat{g}$ – homeomorphism.

Remark 5.7: The following diagram shows the relationships of $sb\hat{g}$ – homeomorphism with other known existing homeomorphisms. A B represents A implies B but not conversely.



1. $sb\hat{g}$ - homeomorphism2. homeomorphism3. b - homeomorphism4. gs - homeomorphism5. gb - homeomorphism6. g^*b -

homeomorphism

7. bĝ – homeomorphism.

Proposition 5.8: For any bijection f: $(X,\tau) \rightarrow (Y,\sigma)$ the following statements are equivalent

- a) Its inverse map f^{-1} : $Y \to X$ is $sb\hat{g}$ continuous
- b) f is a sbĝ open map
- c) f is a $sb\hat{g}$ closed map.

Proof: (a) \rightarrow (b) :

Let G be any open set in X.

Since f^{-1} is sb \hat{g} - continuous, f(G) is sb \hat{g} - open in Y. So, f is a sb \hat{g} - open map. (b) \longrightarrow (c) :

Let F be any closed set in X. Then F^c is open in X. Since f is $sb\hat{g}$ – open, $f(F^c)$ is $sb\hat{g}$ – open in Y. So, f(F) is $sb\hat{g}$ – closed in Y. Therefore, f is a $sb\hat{g}$ – closed map.

(c) \longrightarrow (a) :

Let F be any closed set in X. Since f is a sb \hat{g} – closed map, f(F) is closed in Y. So, $(f^{-1})^{-1}$ (F) is closed in Y. Therefore, f⁻¹ is sb \hat{g} – continuous.

6. REFERENCES

[1] Ahmad Al. Omari and Mohd.SalmiMD. Noorani, On Generalized b-closed sets, *Bull. Malaysian Mathematical Sciences Society*,(2) 32(1) (2009),19-30.

[2] D. Andrijevic, On b-open sets, *Mat. Vesnik.*, 48(1996), no. 1-2, 59-64.

[3] S.P.Arya and T.M.Nour, Characterizations of S-Normal spaces, *Indian J.Pure Appl. Math.*, Vol 21(1990).

[4] K.Bala Deepa Arasi & S.Navaneetha Krishnan, On sbĝ-closed sets in Topological spaces, *IJMA* – 6(10), 2015, 115-121.

[5] P.Bhattacharya and B.K.Lahiri, Semi-generalized closed sets in Topology, *Indian J. Math.*, 29(1987), 375-382.

[6]M.Caldas and E.Ekici, Slightly γ continuous functions Bol. Soc, Parana Mat (3)22(2004) No.2,63-74.

[7] R.Devi R., Maki H., and Balachandran K., Semi-generalized homeomorphisms and generalized semi-homeomorphism in topological spaces, *Indian J. Pure. Appl. Math.*, 26(3) (1995), 271-284.

[8] R.Devi, H.Maki and K.Balachandran, Semi generalized Closed maps and generalized semi-closed maps, MEM. Fac.Sci.Kochi Univ. Sec A Math 14(1993) 41-54.

[9] N Levine, Semi-open sets and semi-continuity in topological spaces Amer.Math. Monthly, 70(1963), 36-41.

[10] N Levine, Generalized closed sets in topology Rend. Circ. Mat. Palermo, 19(1970) 89-96.

[11] H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 15(1994),57-63.

[12] Nagaveni and A.Narmadha, On regular b-closed sets in Topological spaces, *Heber. International conference on Application of Mathematics & Statistics, HICAMS*-2012, 5-7, Jan 2012, 81-87.

[13] A.Narmadha and Nagaveni, On regular b-open sets in Topological spaces, *Int. Journal of Math. Analysis*, 7(19)(2013) 937-948.

[14] New Class of rg*b – continuous functions in toplogicals spaces, International Journal of Fuzzy Mathematical Archive.

[15] ONjastad, On some classes of nearly open sets, Pacific J Math., 15(1965),

[16] Stone.M, Application of the theory of Boolean rings to general topology, *Trans. Amer. Maths. Soc.*, 41(1937) 374-481.

[17] R.Subasree and M.Maria Singam , On bĝ - Closed Sets in Topological Spaces, *IJMA*, 4(7)(2013),168-173.

[18] P.Sundaram, H.Maki and K.Balachandran, Semi generalized continuous maps and Semi $T_{1/2}$ spaces *Bull. Fukuoka Univ Ed Part III 40(1991) 33-40*

[19] R.Subasree and M.Maria Singam, On b \hat{g} – continuous maps and b \hat{g} – open maps in Topological spaces, *IJERT*, Vol 2(10), October 2013.

[21] M.K.R.S.Veerakumar, (2003), \hat{g} – closed sets in Topological Space, *Bull. Allahabad. Math. Soc.*, Vol.18, 99-112.

[22]N.V. Velicko, H-closed topological spaces, Amer. Math.Soc. Transl., 78(1968), 103-118.

[23] D.Vidhya and Parimelazhagan, g*b-closed sets in Topological spaces, *Int. J. Contemp. Math. Sciences*, 7(27), 2012,1305-1312.

[24]D.Vidhya & R.Parimelazhagan, g*b homeomorphism and contra g*b – continuous maps in Topological spaces, *International Journal of computer Applications*, Volume 58 – No.14, November 2012.