

HOMOMORPHISM AND CARTESIAN PRODUCT OF ANTI Q-FUZZY

BG-IDEALS IN BG-ALGERBA

K. Jaibunisha M.Phil. Research Scholar, Department of Mathematics, Jamal Mohamed College, Tiruchirappalli – 20. A. Prasanna Assistant Professor, Department of Mathematics, Jamal Mohamed College, Tiruchirappalli – 20. S.Ismail Mohideen Associate Professor, Department of Mathematics, Jamal Mohamed College, Tiruchirappalli – 20. A. Solairaju Associate Professor, Department of Mathematics, Jamal Mohamed College,

Tiruchirappalli – 20

ABSTRACT

In this paper, we introduce the notion of Anti Q- fuzzy BG- ideal in BG-Algebra under homomorphism and Cartesian product, lower level cut of a fuzzy set, lower level BG-ideal and prove some result on these. We show that a Q-fuzzy subset of a BG-algebra is a Q-fuzzy BG-ideal if and only if complement of this Q-fuzzy subset is an anti Q-fuzzy BG-ideal.

Keywords

BG-algebra, sub BG-algebra, BG-ideal, fuzzy BG-ideal, Anti fuzzy BG-ideal, Q-fuzzy BG-ideal, Anti Q-fuzzy BG-ideal, Homomorphism and Cartesian product.

1.Introduction

The concept of fuzzy set was introduced by Zadeh [8].Since then these ideas have been applied to other algebric structure such as semigroups, groups rings, models vector spaces and topologies. J,.Neggers [6] and H.S.Kim[6] introduced the new notion, called B-algebra. R.Biswas [1] introduced the concept of anti fuzzy subgroup of groups. Modifying his idea, in this paper, we apply the idea to BG-algebra. T.Priya [9] and T.Ramachandran [9] discussed the concept of Homomorphism and Cartesian product of Fuzzy PS-algebras. We introduce a

notion Homomorphism and Cartesian product of Anti Q-fuzzy BG-ideals in BG-algebras, Lower level cuts of a Q-fuzzy set, and prove some result on these. In this paper, we classify the Homomorphism and Cartesian product of Anti Q-fuzzy BG-ideal in BG-algebra.

2.Preliminaries

In this section we site the fundamental definitions that will be used in the sequel.

Definition 2.1

A non empty set X with a constant 0 and a binary operation '.' is called a BG-Algebra if it satisfies the following axioms.

- 1. x * x = 0,
- 2. 0 * x = x,
- 3. (x * y) * (y * x) = x, for all x, $y \in X$.

Example 2.1

Let = $\{0, a, b\}$ be the set with the following table

*	0		1
*	0	a	b
0	0		h
0	0	a	D
	_	0	-
a	a	0	a
h	h	h	0
D	D	D	0

Then (X, *, 0) is a BG-Algebra.

We can define a relation (partial ordering) $x \le y$ if and only if x * y = 0.

Preposition 2.1

In any BG-algebra X, the following hold:

1. $x * y \le 0$ 2. $(x * y) * (x * y) \le x * y$ 3. x * (x * (x * y) = x * y4. $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x$

Definition 2.2

Let S be a non-empty subset of a BG-algebra X, then S is called a

sub algebra of X if $x * y \in S$, for all x, $y \in S$.

Definition 2.3

Let X be a BG –algebra and I be a subset of X, then I is called a BG- right ideal of X if it satisfies the following conditions:

1. $0 \in I$, 2. $x * y \in I$ and $y \in I \Rightarrow x \in I$, 3. $x \in I$ and $y \in X \Rightarrow x * y \in I$, $I \times X \subseteq I$.

Definition 2.4

Let X be a BG –algebra and I be a subset of X, then I is called a BG- left ideal of X if it satisfies the following conditions:

1. $0 \in I$, 2. $x * y \in I$ and $y \in I \Rightarrow x \in I$, 3. $y \in I$ and $x \in X \Rightarrow y * x \in I$, $I \times X \subseteq I$.

Definition 2.5

Let X be a BG –algebra and I be a subset of X, then I is called a BG- ideal of X if it satisfies the following conditions:

1. $0 \in I$, 2. $x * y \in I$ and $y \in I \Rightarrow x \in I$, 3. $x \in I$ and $y \in X \Rightarrow x * y \in I$, and $y * x \in I$, $I \times X \subseteq I$.

Definition 2.6

Let X be a non-empty set. A fuzzy set α of the set X is a mapping α : X \rightarrow [0,1].

Definition 2.6

Let Q and G be any two sets. A mapping A: $G \times Q \rightarrow [0,1]$, is called a Q-fuzzy set in G.

Definition 2.7

Let α be a Q-fuzzy set in set X. For $t \in [0,1]$, the set $\alpha_t = \{x \in X / \alpha(x,q) \ge t \text{ for all } q \in Q\}$ is called level fuzzy subset of α .

Definition 2.8

If α be a Q-fuzzy set in X. Then the complement denoted by α^c is the Q-fuzzy subset of X given by $\alpha^c(x, q)=1$ - $\alpha(x, q)$, for all $x \in X$ and $q \in Q$.

Definition 2.9

Let α be a Q- fuzzy BG-algebra. Then α is called Q-fuzzy sub algebra of x if $\alpha(x * y, q) \ge \min \{ \alpha(x, q), \alpha(y, q) \}$, for all $x, y \in X$ and $q \in Q$.

Definition 2.10

A Q-fuzzy set α in X is called Q-fuzzy BG- ideal of X if it satisfies the following the following inequality, For all x, $y \in X$ and $q \in Q$,

- 1. $\alpha(0, q) \ge \alpha(x, q)$,
- 2. $\alpha(x, q) \ge \min\{ \alpha(x * y, q), \alpha(y, q) \},\$
- 3. $\alpha(x * y, q) \ge \min{\{\alpha(x, q), \alpha(y, q)\}}.$

Homomorphism of anti Q-fuzzy ideals

In this section we discuss about anti Q-fuzzy BG-ideals and BG- algebra under homomorphism and some of their properties

Definition 3.1

A Q- fuzzy set α BG-algebra X is called anti Q-fuzzy sub algebra of X if

 $\alpha(x * y, q) \le \max \{ \alpha(x, q), \alpha(y, q) \}$, for all x, $y \in X$ and $q \in Q$.

Definition 3.2

A Q-fuzzy set α of BG-algebra X is called an anti Q-fuzzy BG- ideal of X if for all $x, y \in X$ and $q \in Q$,

- 1. $\alpha(0, q) \leq \alpha(x, q)$,
- 2. $\alpha(x, q) \leq \max\{ \alpha(x * y, q), \alpha(y, q) \},\$
- 3. $\alpha(x * y, q) \leq \max{\alpha(x, q), \alpha(y, q)}.$

Example 3.1

Let $X = \{0,a,b,c\}$ be the set with the following table.

*	0	a	b	c
0	0	а	b	С
a	а	0	а	а
b	b	b	0	b
с	c	c	c	0

Let $t_0, t_1, t_2 \in [0,1]$ be such that $t_0 < t_1 < t_2$. Define a Q-fuzzy set $\alpha : X \times Q \rightarrow [0,1]$ by $\alpha(0,q) = t_0$, $\alpha(a,q) = t_1 = \alpha(b,q)$ and $\alpha(c,q) = t_2$, routine calculation α is an anti Q-fuzzy subalgebra of X, and it is an anti fuzzy BG-ideal of X and $q \in Q$.

Definition 3.3

Let (X, *, 0) and (Y, *, 0) be BG-algebras. A mapping f: $X \rightarrow Y$ is said to be homomorphism f(x * y) = f(x) * f(y), for all $x, y \in X$.

Remark

If $f: x \rightarrow y$ is a homomorphism of BG-algebra then f(0) = 0.

Definition 3.4

Let $f: X \to Y$ be an endomorphism and α be a fuzzy set in X.We define a new fuzzy set in X. α_f in X as $\alpha_f(x) = \alpha(f(x))$ for all x in X.

Theorem 3.1

Let f: X \rightarrow Y be endomorphism of BG-algebra, Let α is an anti Q-fuzzy BG-ideal of X if and only if α_f is anti Q-fuzzy sub algebra of X.

Proof

By definition, Every anti Q-fuzzy BG-ideal of a BG-algebra X is an anti Q-fuzzy sub algebra of X.

Conversely, let α be an anti Q-fuzzy subalgebra of X.

To prove: α_f is an anti Q-fuzzy subalgebra of X. For all $x, y \in X$ and $q \in Q$,

$$\alpha_f(0) = \alpha(f(0))$$

$$\leq \alpha(f(x))$$

$$= \alpha_f(x) \text{ for all } x \in X.$$

$$\alpha_f(x,q) = \alpha(f(x * y) * (0 * y), q)$$

$$\leq \max \{ (\alpha(f(x * y, q), \alpha(f(0 * y, q)))$$

$$\leq \max \{ (\alpha(f(x * y, q), \max \{ \alpha(f(0, q) * f(y, q)) \} \}$$

$$\leq \max \{ (\alpha(f(x * y, q), \alpha(f(y, q))) \}$$

$$= \max \{ (\alpha_f(x * y, q), \alpha_f(y, q)) \}$$
(ie) $\alpha_f(x,q) \leq \max \{ (\alpha_f(x * y, q), \alpha_f(y, q)) \}$

Hence α_f is an anti Q-fuzzy BG-ideal of X.

Theorem 3.2

Let $f : X \to Y$ be an endomorphism of BG-algebra. Let α be anti Q-fuzzy BG-ideal of a BG-algebra X. If the inequality $x * y \le z$ holds in X. Then

 $\alpha_f(\mathbf{x}, \mathbf{q}) \le \max\{ (\alpha_f(\mathbf{y}, \mathbf{q}), \alpha_f(\mathbf{z}, \mathbf{q})) \}$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{X}$ and $\mathbf{q} \in \mathbf{Q}$.

Proof

Assume the inequality $x * y \le z$ hold in X, and α is an anti Q-fuzzy BG-ideal of X.

Now,

$$\begin{aligned} \alpha(0) &= \alpha(f(0)) = \alpha_f(0) \le \alpha_f(x) \ \alpha(f(x)) \\\\ \alpha_f(x * y, q) \le \alpha(f(x * y), q) \\\\ &\le \max\{(\alpha(f(x * y * z, q), \alpha(f(z, q)))\} \\\\ &= \max\{(\alpha(f(0, q), \alpha(f(z, q)))\} \\\\ &= \alpha(f(z, q)) \\\\ &= \alpha_f(z, q) \end{aligned}$$

It follows that,

$$\begin{aligned} \alpha_f(\mathbf{x}, \mathbf{q}) &\leq \alpha(\mathbf{f}(\mathbf{x}, \mathbf{q})) \\ \alpha_f(\mathbf{x}, \mathbf{q}) &\leq \max\{ (\alpha(\mathbf{f}(\mathbf{x} * \mathbf{y}, \mathbf{q}), \alpha(\mathbf{f}(\mathbf{y}, \mathbf{q}))) \} \\ &\leq \max\{ (\alpha(\mathbf{f}(\mathbf{z}, \mathbf{q}), \alpha(\mathbf{f}(\mathbf{y}, \mathbf{q}))) \} \\ &\leq \max\{ \alpha_f(\mathbf{z}, \mathbf{q}), \alpha_f(\mathbf{y}, \mathbf{q}) \} \end{aligned}$$

Hence the result.

Theorem 3.3

Let $f : X \to Y$ is homomorphism of BG-algebra. A Q-fuzzy subset α_f of a BG-algebra X is a Q-fuzzy BG-ideal of X if and only if its complement α_f^c is an anti Q-fuzzy BG-ideal of X.

Proof

Let α_f be an anti Q-fuzzy BG-ideal of X and let $x, y \in X$ and $q \in Q$.

Then,

(i)
$$\alpha_f^c(0, q) = \alpha^c(f(0, q))$$

$$= 1 - \alpha(f(0, q))$$

$$\leq 1 - \alpha(f(x, q))$$

$$\leq 1 - \alpha_f(x, q)$$

$$= \alpha_f^c(x, q)$$
(ii) $\alpha_f^c(x, q) = \alpha^c(f(x, q))$

$$= 1 - \alpha(f(x, q))$$

$$\leq 1 - \min\{\alpha(f(x * y, q)\alpha(f(y, q))\}$$

$$= 1 - \min\{1 - \alpha^c(f(x * y, q), \alpha^c(f(y, q))\}$$

$$= \max\{\alpha^c(f(x * y, q), \alpha^c(f(y, q))\}$$

That is

$$\alpha_f^c(\mathbf{x}, \mathbf{q}) \le \max \left\{ \alpha_f^c(\mathbf{x} \ast \mathbf{y}, \mathbf{q}), \alpha_f^c(\mathbf{x}, \mathbf{q}) \right\}$$

(iii)
$$\alpha_f^c(\mathbf{x} * \mathbf{y}, \mathbf{q}) = \alpha^c(\mathbf{f}(\mathbf{x} * \mathbf{y}, \mathbf{q}))$$

$$= 1 - \alpha(\mathbf{f}(\mathbf{x} * \mathbf{y}, \mathbf{q}))$$

$$\leq 1 - \min\{\alpha(\mathbf{f}(\mathbf{x}, \mathbf{q}) \ \mathbf{f}(\mathbf{y}, \mathbf{q}))\}$$

$$= 1 - \min\{\alpha(\mathbf{f}(\mathbf{x}, \mathbf{q}), \alpha(\mathbf{f}(\mathbf{y}, \mathbf{q}))\}$$

$$= 1 - \min\{1 - \alpha^c(\mathbf{f}(\mathbf{x}, \mathbf{q}), 1 - \alpha^c(\mathbf{f}(\mathbf{y}, \mathbf{q}))\}$$

$$= \max\{\alpha^c(\mathbf{f}(\mathbf{x}, \mathbf{q}), \alpha^c(\mathbf{f}(\mathbf{y}, \mathbf{q}))\}$$

$$\leq \max\{\alpha_f^c(\mathbf{x}, \mathbf{q}), \alpha_f^c(\mathbf{y}, \mathbf{q})\}$$

That is,

 $\alpha_f^c(\mathbf{x} * \mathbf{y}, \mathbf{q}) \le \max \{\alpha_f^c(\mathbf{x}, \mathbf{q}), \alpha_f^c(\mathbf{y}, \mathbf{q})\}\$

Thus α_f^c is an anti Q-fuzzy ideal of X the converse also can be proved similarly.

Cartesian product of anti Q-fuzzy BG-ideal in BG-algebra

In this section, we introduce the concept of Cartesian product of anti Q-fuzzy BG-ideal in BG-algebra.

Definition 4.1

Let α be a Q-fuzzy subset of a BG-algebra X. For $t \in [0,1]$, the set

 $\alpha^t = \{x \in X \ \alpha(x,q) \le t\}$ is called a lower cut of α cleary and $\alpha^1 = X$ and

 $\alpha_t \cup \alpha^t = X$ for $t \in [0,1]$. If $t_1 < t_2$ then $\alpha^{t1} \subseteq \alpha^{t2}$.

Definition 4.2

Let α and δ be the fuzzy sets in X. The Cartesian product

 $(\alpha \times \delta)$: X × X → [0,1] is defined by $(\alpha \times \delta)$ (x, y) = min { $\alpha(x), \delta(y)$ } for all

 $x, y \in X.$

Definition 4.3

Let α and δ be the anti Q-fuzzy BG-ideal in X. The Cartesian Product

 $(\alpha \times \delta)$: X × X → [0,1] is defined by $(\alpha \times \delta)(x,y) = \max \{\alpha(x), \delta(y)\}$ for all x, y ∈ X.

Theorem 4.1

Let α and δ be an anti Q-fuzzy subset of a BG-algebra X × X. If $\alpha \times \delta$ is anti Q-fuzzy BG-ideal of X × X. Then the Lower level cut α^t is a BG-ideal of X for all $t \in [0,1]$; $t \ge \alpha(0, q)$.

Proof

Let α and δ be an anti Q-fuzzy BG-ideal of X × X. Then for all

 $x, y \in X \times X$ and $q \in Q$.

 $(\alpha \times \delta) (0, 0) \le \max\{\alpha(0), \delta(0)\}$ $\le \max\{\alpha(x), \delta(y)\}$ $\le (\alpha \times \delta) (x, y)$

If α is an anti Q-fuzzy ideal of X. Then for all x, $y \in X$ and $q \in Q$.

1.
$$\alpha(0, q) \leq \alpha(x, q)$$
,

- 2. $\alpha(x, q) \leq \max{\alpha(x * y, q), \alpha(y, q)},$
- 3. $\alpha(x * y, q) \leq \max{\alpha(x, q), \alpha(y, q)}.$

To prove that α^t is an BG-ideal of X.

We know that $\alpha^t = \{x \in X / \mu(x, q) \le t\}$

Let x, $y \in \alpha^t$ and α is an anti Q-fuzzy BG-ideal of X.

Since $\alpha(0,q) \le \alpha(x,q) \le t$ implies $0 \in \alpha^t$, for all $t \in [0,1]$

Let $x * y \in \alpha^t$ and $y \in \alpha^t$

Therefore $\alpha(x * y, q) \le t$ and $\alpha(y, q) \le t$

Now,
$$\alpha(\mathbf{x},\mathbf{q}) \leq (\alpha \times \delta) ((\mathbf{x},0),\mathbf{q})$$
$$\leq \max \{ (\alpha \times \delta) ((\mathbf{x},0)*(\mathbf{y},0),\mathbf{q}), (\alpha \times \delta) ((\mathbf{y},0),\mathbf{q}) \}$$
$$\leq \max \{ (\alpha \times \delta) ((\mathbf{x}*\mathbf{y}), (0*0),\mathbf{q}), (\alpha \times \delta) ((\mathbf{y},0),\mathbf{q}) \}$$
$$\leq \max \{ (\alpha \times \delta) ((\mathbf{x}*\mathbf{y},0),\mathbf{q}), (\alpha \times \delta) ((\mathbf{y},0),\mathbf{q}) \}$$
$$\leq \max \{ \alpha(\mathbf{x}*\mathbf{y},\mathbf{q}), \alpha (\mathbf{y},\mathbf{q}) \}$$
$$\leq \max \{ \mathbf{x},\mathbf{x},\mathbf{y},\mathbf{q},\mathbf{q},\mathbf{q}\}$$

$$\leq t$$

Hence $\alpha(x, q) \leq t$

That is $x * y \in \alpha^t$ and $y \in \alpha^t$ Implies $x \in \alpha^t$.

(i) Let $x \in \alpha^t$ and $y \in X$

Choose y in X such that, $\alpha(y, q) \leq t$

Since $x \in \alpha^t$ implies $\alpha(x, q) \le t$

We know that

$$\begin{aligned} \alpha(\mathbf{x} * \mathbf{y}, \mathbf{q}) &= (\alpha \times \delta) ((\mathbf{x} * \mathbf{y}, 0), \mathbf{q}) \\ &= (\alpha \times \delta) ((\mathbf{x} * \mathbf{y}), (0 * 0), \mathbf{q}) \\ &= (\alpha \times \delta) ((\mathbf{x}, 0), *(\mathbf{y}, 0), \mathbf{q}) \\ &\leq \max \left\{ (\alpha \times \delta) ((\mathbf{x}, 0), \mathbf{q}), (\alpha \times \delta) ((\mathbf{y}, 0), \mathbf{q}) \right\} \\ &\leq \max \left\{ \alpha(\mathbf{x}, \mathbf{q}), \alpha (\mathbf{y}, \mathbf{q}) \right\} \\ &\leq \max\{\mathbf{t}, \mathbf{t}\} \\ &\leq \mathbf{t}. \end{aligned}$$

That is, $\alpha(x * y, q) \le t$ implies $x * y \in \alpha^t$

(ii) Let $y \in \alpha^t$, $x \in X$

Choose x in X such that $,\alpha(x, q) \leq t$

Since $y \in \alpha^t$ implies $\alpha(y, q) \le t$

We know that

$$\begin{aligned} \alpha(\mathbf{y} * \mathbf{x}, \mathbf{q}) &= (\alpha \times \delta) ((\mathbf{y} * \mathbf{x}, 0), \mathbf{q}) \\ &= (\alpha \times \delta) ((\mathbf{y} * \mathbf{x}), (0 * 0), \mathbf{q}) \\ &= (\alpha \times \delta) ((\mathbf{y}, 0), * (\mathbf{x}, 0), \mathbf{q}) \\ &\leq \max \left\{ (\alpha \times \delta) ((\mathbf{y}, 0), \mathbf{q}), (\alpha \times \delta) ((\mathbf{x}, 0), \mathbf{q}) \right\} \\ &\leq \max \left\{ \alpha(\mathbf{y}, \mathbf{q}), \alpha (\mathbf{x}, \mathbf{q}) \right\} \\ &\leq \max \left\{ t, t \right\} \end{aligned}$$

 $\leq t$

That is, $\alpha(y * x, q) \leq t$ implies $y * x \in \alpha^t$

Hence α^t is a BG- ideal of X.

Theorem 4.2

Let α and δ be a Q-fuzzy subset of a BG- algebra of X, such that $\alpha \times \delta$ is an anti Q-fuzzy ideal of X \times X. If for each t $\in [0,1]$, t $\geq \alpha(0, q)$. The lower level cut α^t is a BG ideal of X. Then α is an anti Q-fuzzy BG-ideal of X.

Proof

Since α^t is a BG ideal of X.

- (i) $0 \in \alpha^t$
- (ii) $x * y \in \alpha^t$ and $y \in \alpha^t$ implies $x \in \alpha^t$
- (iii) $x \in \alpha^t$ and $y \in X$ implies $x * y \in \alpha^t$.

To prove that α^t is an anti Q-fuzzy BG-ideal of X.

For all x, $y \in X$ and $q \in Q$.

(i) Let $x, y \in \alpha^t$ then $\alpha(x, q) \le t$, $\alpha(y, q) \le t$

Let $\alpha(\mathbf{x}, \mathbf{q}) \leq t_1$ and $\alpha(\mathbf{y}, \mathbf{q}) \leq t_2$,

Without loss of generality let $t_1 \leq t_2$,

Then $\mathbf{x} \in \alpha^{t_2}$

Now $x \in \alpha^{t_2}$ and $y \in X$. $x * y \in \alpha^{t_2}$.

That is,

$$\begin{aligned} \alpha(\mathbf{x} * \mathbf{y}, \mathbf{q}) &\leq t_2 \\ &= \max \{ t_1, t_2 \} \\ &= \max \{ \max \{ t_1, t_2 \}, \max \{ t_1, t_2 \} \} \\ &= \max \{ \max \{ \alpha(\mathbf{x}, \mathbf{q}) \, \alpha(\mathbf{y}, \mathbf{q}), \max \{ \delta(0, \mathbf{q}) \, \delta(0, \mathbf{q}) \} \} \\ &= \max \{ \max \{ \alpha(\mathbf{x}, \mathbf{q}) \, \alpha(\mathbf{y}, \mathbf{q}) \}, \delta(0, \mathbf{q}) \} \\ &= \max \{ (\alpha \times \delta) \, ((\mathbf{x}, 0), \mathbf{q}), \, (\alpha \times \delta) \, ((\mathbf{y}, 0), \mathbf{q}) \} \end{aligned}$$

$$= \max\{ \alpha(\mathbf{x}, \mathbf{q}) \alpha(\mathbf{y}, \mathbf{q}) \}$$

(ii) Let
$$\alpha(0, q) = \alpha(x * x, q)$$

$$= (\alpha \times \delta)((x * x, 0), q)$$

$$= (\alpha \times \delta)((x * x, 0 * 0), q)$$

$$= (\alpha \times \delta) ((x, 0) * (x, 0), q)$$

$$\leq \max\{(\alpha \times \delta) ((x, 0), q), (\alpha \times \delta) ((x, 0), q)\}$$

$$\leq \max\{\alpha(x, q), \alpha(x, q)\}$$

Therefore $\alpha(0, q) \leq \alpha(x, q)$

(iii)Let
$$\alpha(x, q) = (\alpha \times \delta)((x, 0), q)$$

$$= (\alpha \times \delta)((x, 0) * (y, 0)) * ((0, 0) * (y, 0)), q) \}$$

$$\leq \max\{ (\alpha \times \delta)((x, 0) * (y, 0), q),$$

$$(\alpha \times \delta) ((0, 0) * (y, 0), q) + by(i)$$

$$\leq \max\{ (\alpha \times \delta)((x, 0) * (y, 0), q),$$

$$\max\{ (\alpha \times \delta) ((0, 0), q), (\alpha \times \delta) (y, 0)), q \}$$

$$\leq \max\{ (\alpha \times \delta)((x * y), (0 * 0), q), (\alpha \times \delta) (y, 0)), q \}$$

$$\leq \max\{ \alpha(x * y, q), \alpha(y, q) \}, \quad by(ii)$$

Therefore $\alpha(x, q) \le \max \{ \alpha(x * y, q), \alpha(y, q) \},\$

Hence α is an anti Q-fuzzy BG-ideal of X.

5.Conclusion

In this paper we have discussed anti Q-fuzzy BG-ideal and BG-sub algebras of BGalgebra under homomorphism and Cartesian product. It has observed that BG-algebras as a generalization of BCK/BCI/B/d-algebras.

REFERENCES

[1] Biwas.R, Anti fuzzy sub groups of groups,9March, 1990 Vol 35(1), 121-124.

[2] Jun.Y.B, Roh.E.H, and Kim.H.S, On BH-algebras, sci.mathematics, 1 (1998), 347-354.

[3] Muthuraj.R ,Sridharan.M, Sitharselvam.M.P, Fuzzy BG-ideal in BG-Algebra, International Journal of Computer Application. (0975-8887) Volume 2,No.1, 26-30, May 2010.

[4] Muthuraj.R, Sitharselvam.M.P, Muthuraman.M.S, Anti Q-Fuzzy groups and its lower level sub groups, International Journal of Computer Applications (0975-8887) Volume 3, No.3, 16-20, June 2010.

[5] Muthuraj.R ,Sridharan.M, Muthuraman.M.S, Sitharselvam.M.P, Anti Q-Fuzzy BG-ideal in BG-Algebra, International Journal of Computer Application. (0975-8887) Volume 4,No.11, August 2010.

[6] Neggers and Kim.H.S, On- B-Algebras, Math Vensik, 54 (2002), 21-29.

[7] Neggers and Kim.H.S, On- d-Algebras, Math Slovaca, 49 (1999), 19-26.

[8] Priya.T and Ramachandran.T, Homomorphism and Cartesian product of Fuzzy PS-Algebras, Applied Mathematics Science, Vol.8, 2014, no.67, 3321-3330.

[9] Zadeh.L.A, fuzzyset, Inform.Comtrol,8(1965),338-353.