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ABSTRACT 

The paper presents a method for factoring a composite integer 𝑁  based on the 

composition of binary quadratic forms which depends on the search for ambiguous forms that 

leads to a non trivial factorization of 𝑁. In this method we propose to obtain a square binary 

quadratic form from a positive definite binary quadratic form and construct an ambiguous form 

via the square root of a square binary quadratic form. 
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1  Introduction 

 
 The theory of binary quadratic forms initiated right from ancient Greeks, developed by 

Brahma Gupta during seventh century, later by Lagrange, Gauss, Euler, Fermat during 

seventeenth century, plays a vital role in Computational Number Theory and Cryptography[1]. 

There are various factorization methods based on binary quadratic forms, Fermat factoring method 

based on binary quadratic forms representing a composite number 𝑁 in two different ways by the 

binary quadratic form (1,0,1) or 𝑥2 + 𝑦2 and Mckee method speeds a Fermat algorithm. There 

are also factorizing methods based on composition of binary quadratic forms like Shank’s class 

group method by Shank’s during 1971 with complexity 𝑂(𝑁
1

5
+𝜀) and Shank’s SQUFOF method 

of complexity 𝑂(𝑁
1

4
+𝜀)  [2] and Schoof’s factoring algorithms by Schoof during 1982 with 

complexity 𝑂(𝑁
1

5). In addition to these, all seive factoring algorithms are based on solutions of the 

congruence of binary quadratic forms 𝑥2 − 𝑦2 ≡ 0(mod𝑁)[3]. In [4 ], we gave a factoring 

method, factorization via difference of squares using ambiguous forms. In this paper we describe a 

method based on composition of binary quadratic forms with discriminant 𝑑 < 0. This method 

depends on the search for the ambiguous forms and we consider the positive definite square binary 

quadratic forms of the form 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 with 𝑎 or 𝑐 square and arrive at the required 

ambiguous form that leads a non trivial factorization of 𝑁. We first give a brief description on 

basics of binary quadratic forms, composition on binary quadratic forms, ambiguous forms and 

Shank’s class group factorization method. 
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1.1  Binary Quadratic Forms 

 
 A binary quadratic form 𝑓(𝑥, 𝑦) is a homogeneous polynomial 𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 of 

degree 2 denoted by (𝑎, 𝑏, 𝑐)  where the coefficients 𝑎, 𝑏  and 𝑐  are fixed integers and the 

variables 𝑥 and 𝑦 are restricted to integers and by square binary quadratic form, we mean a 

binary quadratic form (𝑎, 𝑏, 𝑐) where 𝑎 is a square. A binary quadratic form (𝑎, 𝑏, 𝑐) is said to 

be primitive if gcd(𝑎, 𝑏, 𝑐) = 1 [5].  

 

Definition 1 .1.1 The discriminant of a binary quadratic form 𝑓 = (𝑎, 𝑏, 𝑐) denoted as ’d’ is 

defined to be the value 𝑑 = 𝑏2 − 4𝑎𝑐.  

 

Definition 1 .1.2  For 𝑑 < 0, a binary quadratic form 𝑓(𝑥, 𝑦) is said to be positive definite if 

𝑎 > 0 and is negative definite if 𝑎 < 0.  

 

Definition 1 .1.3  For any 𝑛𝜀ℤ, 𝑛 is set to be represented by the binary quadratic form 𝑓(𝑥, 𝑦), if 

𝑛 = 𝑓(𝑥0, 𝑦0) for some 𝑥0, 𝑦0𝜀ℤ and if gcd(𝑥0, 𝑦0) = 1, it is called proper representation.  

 

Definition 1 .1.4  Two binary quadratic forms 𝑓 and 𝑔 are equivalent [6] if there exists an 

integer matrix 𝑀 =  
𝑝 𝑞
𝑟 𝑠

  of determinant equal to 1 such that  

 𝑔(𝑥, 𝑦) = 𝑓( 
𝑝 𝑞
𝑟 𝑠

  
𝑥
𝑦 ) 

 = 𝑓(𝑝𝑥 + 𝑞𝑦, 𝑟𝑥 + 𝑠𝑦) 
 

Theorem 1.1.5  Equivalence preserves the discriminant 𝑑 = 𝑏2 − 4𝑎𝑐. 

 

Remark 1.1.6  The equivalent relation of quadratic forms on the set of all binary quadratic forms 

of discriminant d is an equivalence relation and the equivalence classes can be classified by the 

binary quadratic forms called reduced forms.  

 For further study we consider only positive definite binary quadratic forms.  

Definition 1.1.7  A positive definite quadratic form (𝑎, 𝑏, 𝑐) is reduced if |𝑏| ≤ 𝑎 ≤ 𝑐 and in 

addition, if either |𝑏| = 𝑎 or 𝑎 = 𝑐, then 𝑏 ≥ 0 [7].  

 The following theorem classify the equivalence classes by reduced forms.  

Theorem 1.1.8  Every class of primitive positive definite quadratic forms contains a unique 

reduced form.  

 

 

1.2  Composition on Binary quadratic forms [8]  

 
 Let 𝒞(𝑑)  denote the set of equivalence classes of primitive binary quadratic forms of 

discriminant 𝑑 < 0. We shall use the notation < 𝑎, 𝑏, 𝑐 > for the equivalence class containing 

the form (𝑎, 𝑏, 𝑐). On the set 𝒞(𝑑) given as 𝒞(𝑑) = {< 𝑎, 𝑏, 𝑐 >/𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) = 1𝑤𝑖𝑡𝑕𝑏2 −
4𝑎𝑐 = 𝑑} there is a binary operation ‘∗’ defined as follows: 

 

for any, < 𝑎1, 𝑏1, 𝑐1 >, < 𝑎2, 𝑏2, 𝑐2 >∈ 𝐶(𝑑) 

 

 < 𝑎1, 𝑏1, 𝑐1 >∗< 𝑎2, 𝑏2, 𝑐2 >=< 𝑎3, 𝑏3, 𝑐3 > 
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where (𝑎3, 𝑏3, 𝑐3) is a binary quadratic form, obtained from the given quadratic forms (𝑎1, 𝑏1, 𝑐1) 

, (𝑎2, 𝑏2, 𝑐2) as  

 𝑎3 =
𝑎1𝑎2

𝑒2
, 

 𝑏3 = 𝑥, the unique solution of 𝑥2 ≡ 𝑑(mod
4𝑎1𝑎2

𝑒2 ), 

 𝑥 ≡ 𝑏1(mod
2𝑎1

𝑒
), 

 𝑥 ≡ 𝑏2(mod
2𝑎2

𝑒
) 

 𝑐3 = 𝑒2(
𝑏3

2−𝑑

4𝑎1𝑎2
) 

 

 for 𝑒 = gcd(𝑎1, 𝑎2,
𝑏1+𝑏2

2
) . In particular, this form (𝑎3, 𝑏3, 𝑐3)  is also represented as 

(𝑎1, 𝑏1, 𝑐1) ∗ (𝑎2, 𝑏2, 𝑐2). With respect to this composition of gauss on 𝒞(𝑑), 𝒞(𝑑) forms an 

abelian group with < 1,0,
−𝑑

4
>  or < 1,1,

1−𝑑

4
>  as identity accordingly as 𝑑  even or odd 

respectively, and for any < 𝑎, 𝑏, 𝑐 > in 𝒞(𝑑), < 𝑐, 𝑏, 𝑎 > is the inverse.  

 

Definition 1.2.1 The order of the group 𝒞(𝑑) is the number of primitive reduced forms called the 

class number and is denoted as 𝑕(𝑑) [8]. 

 

Definition 1.2.2 The set of all classes in 𝒞(𝑑) of order 2 are called the ambiguous classes [9].  

 

Remark 1.2.3  The primitive reduced forms of the ambiguous classes called ambiguous forms 

are of three types namely (𝑎, 0, 𝑐), (𝑎, 𝑎, 𝑐) and (𝑎, 𝑏, 𝑎) [10] and are classified by the following 

lemma. 

 

 

Lemma 1.2.4  Suppose 𝑑 is a negative discriminant. If 𝑑 is even, then the ambiguous forms of 

discriminant 𝑑 include the forms (𝑢, 0, 𝑣), where 0 < 𝑢 ≤ 𝑣, gcd(𝑢, 𝑣) = 1, and 𝑢𝑣 = −𝑑/4. 

In addition,if 𝑢𝑣 = −𝑑/4, with gcd(𝑢, 𝑣) = 1 or 2 and 
1

2
(𝑢 + 𝑣) odd, we have the forms 

1

2
(𝑢 + 𝑣), 𝑣 − 𝑢,

1

2
(𝑢 + 𝑣) when 

1

3
𝑣 ≤ 𝑢 < 𝑣 and the forms (2𝑢, 2𝑢,

1

2
(𝑢 + 𝑣)) when 0 < 𝑢 <

1

3
𝑣. If 𝑑 is odd, then the ambiguous forms of discriminant 𝑑 are the forms (

1

4
(𝑢 + 𝑣),

1

2
(𝑣 −

𝑢),
1

4
(𝑢 + 𝑣)), where −𝑑 = 𝑢𝑣 with 0 <

1

3
𝑣 ≤ 𝑢 ≤ 𝑣, gcd(𝑢, 𝑣) = 1 and the forms 

(𝑢, 𝑢,
1

4
(𝑢 + 𝑣)), where −𝑑 = 𝑢𝑣, 0 < 𝑢 ≤

1

3
(𝑣), gcd(𝑢, 𝑣) = 1. 

 

Shank’s Class Group method of factorization : In this method, the above lemma on ambiguous 

form is used in implementing factorization method with ambiguous forms. In this method it is 

noted that each ambiguous form gives a factorization of 𝑁, the search for non trivial factorizations 

is really a search for ambiguous form. Given a negative discriminant 𝑑, by using 𝑕(𝑑), the class 

number which is the order of the group 𝒞(𝑑), we have for 𝑕(𝑑) = 𝑕 = 2𝑙𝑕0 , where 𝑕0 is odd, 

then for 𝑓 =< 𝑎, 𝑏, 𝑐 >∈ 𝐶(𝑑) and for 𝐹 = 𝑓𝑕𝑜 , either 𝐹 = 𝐼𝑑  or one of 𝐹, 𝐹2, 𝐹4, . . . 𝐹2  has 

order 2 in the group and the reduced member of this form of order 2, is an ambiguous form. Hence 

in this method an ambiguous form is constructed by the knowledge of just 𝑕 and 𝑓. 
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2  Factorization using square root of a square binary quadratic form 

 

In this section we propose a method to compute ambiguous forms without using the class number 

𝑕(𝑑) but by finding square root of square binary quadratic forms. In this context we first describe 

the method of finding a square root of a binary quadratic form. 

 

2.1  Square root of a binary quadratic form 

 
 By the definition of composition on 𝒞(𝑑) any class containing a binary quadratic form 𝑔 is a 

square root of class containing 𝑔 ∗ 𝑔, and as any quadratic form 𝑓~𝑔 ∗ 𝑔 is also in the same class 

we consider 𝑔 as a square root of all such forms 𝑓 that are equivalent to 𝑔2.In the following 

theorem we look at possibilities for a square root for a given binary quadratic form.  

 

Theorem 2.1.1  If a primitive binary quadratic form 𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 represents 𝑧2 

with (𝑥, 𝑦) = 1, then there exists a binary quadratic form 𝑔 such that 𝑔2 = (𝑧2, 𝑏′, 𝑐′) for some 

𝑏′, 𝑐′ ∈ ℤ and 𝑓~𝑔2 . In particular, 𝑔 is a square root of 𝑓 . 

 

Proof. Let 𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 be a square binary quadratic form and let (𝑢, 𝑣, 𝑧) be a 

solution of the quadratic equation 𝑓(𝑥, 𝑦) = 𝑧2 with gcd(𝑢, 𝑣) = 1. Then there exists integers 

𝑟, 𝑠 such that 𝑑𝑒𝑡  
𝑢 𝑟
𝑣 𝑠

 = 1. 

Now for 𝑀 =  
𝑢 𝑟
𝑣 𝑠

 , we have 𝑓(𝑀(𝑢, 𝑣)) = 𝑎′𝑢2 + 𝑏′𝑢𝑣 + 𝑐′𝑣2, where  

 𝑎′ = 𝑓(𝑢, 𝑣) = 𝑧2 

 𝑏′ = 2𝑎𝑢𝑟 + 𝑏(𝑢𝑠 + 𝑣𝑟) + 2𝑐𝑣𝑠 

 𝑐′ = 𝑓(𝑟, 𝑠) = 𝑎𝑟2 + 𝑏𝑟𝑠 + 𝑐𝑠2 

 and by definition of equivalence as 𝑓(𝑥, 𝑦)~𝑓(𝑀(𝑥, 𝑦))  we have (𝑎, 𝑏, 𝑐)~(𝑎′, 𝑏′, 𝑐′) =
(𝑧2, 𝑏′, 𝑐′). Hence 𝑓 is equivalent to the square form (𝑧2, 𝑏′, 𝑐′). We have the class containing 𝑓 

given as < 𝑎, 𝑏, 𝑐 > is in 𝒞(𝑑), therefore the class < 𝑎′, 𝑏′, 𝑐′ > is also in 𝒞(𝑑) with  

< 𝑎, 𝑏, 𝑐 >=< 𝑎′, 𝑏′, 𝑐′ >=< 𝑧2, 𝑏′, 𝑐′ > 

=< 𝑧, 𝑏′, 𝑧𝑐′ >∗< 𝑧, 𝑏′, 𝑧𝑐′ > in 𝒞(𝑑) by definition of composition ∗. 

𝑡𝑕𝑒𝑟𝑒𝑓𝑜𝑟𝑒,  for (𝑧, 𝑏′, 𝑧𝑐′) = 𝑔  as (𝑧2, 𝑏′, 𝑐′) = 𝑔 ∗ 𝑔 = 𝑔2 , we have 𝑔  is a square root of 

(𝑧2, 𝑏′, 𝑐′) and the class containing 𝑔 is a square root of class containing (𝑧2, 𝑏′, 𝑐′) in particular 

square root of class containing 𝑓. 

Therefore,we have 𝑔 is a square root of 𝑓 . 

 

It is noted that if 𝑓 = (𝑎2, 𝑏, 𝑐), then 𝑓  is a square form and 𝑓  has a square root given as 

(𝑎, 𝑏, 𝑎𝑐). Now in the following theorem we prove that if 𝑓 is of the form 𝑓 = (𝑎, 𝑏, 𝑐2) then 

again 𝑓 has a square root. 

 

Theorem 2.1.2  If 𝑓 is a binary quadratic form with 𝑎 or 𝑐 square and discriminant 𝑑 < 0, 

then there is a square form with discriminant 𝑑 that is equivalent to 𝑓.  

 

Proof.  Let 𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2  be a binary quadratic form with 𝑎 or 𝑐 is a square. 

Suppose 𝑎 is a square and if 𝑎 = 𝑧2, for some integer 𝑧, then we have 𝑓 = (𝑎, 𝑏, 𝑐) = (𝑧2, 𝑏, 𝑐) 

a square form. 

Suppose 𝑐 is a square and if 𝑐 = 𝑡2 , for some integer 𝑡, a complete set of solutions to the binary 

quadratic equation 𝑓(𝑥, 𝑦) = 𝑧2 with 𝑐 as a square can be obtained[12] as follows 
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Since 𝑐 = 𝑡2 we have  

  𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑡2𝑦2 = 𝑧2 

 ⇒ 𝑥(𝑎𝑥 + 𝑏𝑦) = 𝑧2 − 𝑡2𝑦2 

 now by setting
𝑧+𝑡𝑦

𝑥
=

𝑎𝑥+𝑏𝑦

𝑧−𝑡𝑦
= 𝜆(𝑠𝑎𝑦), 

 we have 𝑧(𝑐 − 𝜆2) − 𝑎 = −𝑦(𝑡𝜆2 + 𝑏𝜆 + 𝑎𝑡) 

 then, 𝑧 = 𝑙𝑦 

 𝑓𝑜𝑟  𝑙 =
𝑡𝜆2+𝑏𝜆+𝑎𝑡

𝜆2−𝑎
=

𝑟

𝑠
 

 where 
𝑟

𝑠
 is a fraction in its lowest terms. Then, we have  

 𝑥 = 𝜇  
𝑟+𝑡𝑠

𝜆
  

 𝑦 = 𝜇𝑠 

 𝑧 = 𝜇𝑟 

 and varying 𝜆 and 𝜇 a complete set of solutions to the binary quadratic equation 𝑓(𝑥, 𝑦) = 𝑧2 

with 𝑐 as a square is obtained. 

Then from the set of solutions,we have for a solution (𝑥, 𝑦, 𝑧) with gcd(𝑥, 𝑦) = 1, as 𝑓 properly 

represents 𝑧2 by above theorem(3) we have 𝑓 = (𝑎, 𝑏, 𝑐)~(𝑧2, 𝑏′, 𝑐′), a square form equivalent 

and (𝑧, 𝑏′, 𝑧𝑐′) is a square root of 𝑓. 

 

  For example note for 𝑓 = (6,3,4) a binary quadratic form with 𝑐 = 4 = 22 = 𝑡2, we have the 

solution of the binary equation 𝑓(𝑥, 𝑦) = 𝑧2 , given as 𝑥 = 7, 𝑦 = −5, 𝑧 = 17, f𝑜𝑟 𝜆 =
1 a𝑛𝑑 𝜇 = 1  in the formulas above and 𝑓(7,−5) = 289 = 172 = 𝑧2 . Then for 𝑔2 =
(𝑧2, 𝑏′, 𝑐′) = (289, 245, 52)~𝑓 implies 𝑔 = (𝑧, 𝑏′, 𝑧𝑐′) = (17, 245, 884) is a square root of f. 

 

2.2  Implementing Factorization with square root of a square binary quadratic form 

 In this method we propose to obtain a square binary quadratic form from a positive definite binary 

quadratic form and construct an ambiguous form via the square root of a square binary quadratic 

form to implement the factorization of a composite number 𝑁 = 𝑝𝑞 for 𝑝, 𝑞 primes.  

 

 

Theorem 2.2.1  If 𝑓 is a square binary quadratic form with discriminant 𝑑 < 0 then there is an 

ambiguous form 𝑔𝑜(𝑓) where (𝑜(𝑓) is the order of the class containing f, in 𝒞(𝑑), leading to 

factorization of a composite number 𝑁 = 𝑝𝑞 for some binary quadratic form 𝑔.  

 

Proof.  Let (𝑎, 𝑏, 𝑐) be a binary quadratic form with discriminant 𝑑 for some integers 𝑎, 𝑏, 𝑐.By 

the above theorem if the form (𝑎, 𝑏, 𝑐) is such that 𝑎 or 𝑐 is a square, then we have a square 

binary quadratic form 𝑓. Now first note in any case we can obtain a square form 𝑓 ∈ 𝒞 for some 

class 𝒞 in 𝒞(𝑑) for if (𝑎, 𝑏, 𝑐) for some integers 𝑎, 𝑏, 𝑐 is such that 

Case(1): (𝑎, 𝑏, 𝑐) is not primitive i.e., gcd(𝑎, 𝑏, 𝑐) = 𝑡 > 1, then the form 𝑔 = (𝑡2, 𝑏,  
𝑎

𝑡
  

𝑐

𝑡
)  is 

of discriminant 𝑏2 − 4 ⋅ 𝑡2 ⋅
𝑎𝑐

𝑡2 = 𝑏2 − 4𝑎𝑐 = 𝑑 and 𝑔 is a square form of discriminant 𝑑. 

Case(2): If (𝑎, 𝑏, 𝑐) is primitive, then gcd(𝑎, 𝑏, 𝑐) = 1 and we have two sub cases  

 (𝑖)gcd(𝑎, 𝑐) ≠ 1 

 (𝑖𝑖)gcd(𝑎, 𝑐) = 1 
 

case(i): If gcd(𝑎, 𝑐) ≠ 1 then for gcd(𝑎, 𝑐) = 𝑡 > 1, we have 𝑔 = (𝑡2 , 𝑏,  
𝑎

𝑡
  

𝑐

𝑡
)  is a square 
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form of discriminant 𝑑. 

case(ii): If gcd(𝑎, 𝑐) = 1 , then for  gcd(𝑎, 𝑏) = 1  we have 𝑓 ∗ 𝑓 = (𝑎, 𝑏, 𝑐) ∗ (𝑎, 𝑏, 𝑐) =

(𝑎2, 𝑏,
𝑏2−𝑑

4𝑎2
) is a square form of discriminant 𝑑 and for  gcd 𝑎, 𝑏 ≠ 1 if gcd 𝑎, 𝑏 = 𝑡 > 1,  

we take g =  𝑎′ , 𝑏, 𝑐𝑡  with 𝑎′ =
𝑎

𝑡
  then we have 𝑓 ∗ 𝑓 = (𝑎′, 𝑏, 𝑐𝑡) ∗ (𝑎′, 𝑏, 𝑐𝑡) = (𝑎′2, 𝑏,

𝑏2−𝑑

4𝑎′2 ) 

is a square form of discriminant 𝑑.  

 

Now for implementation of factorization with ambigous form take 𝑓 = (𝑎2, 𝑏, 𝑐), a primitive 

square binary quadratic form such that < 𝑓 >∉ 𝑐0  in 𝒞(𝑑) . Then for  𝑓 = (𝑎2, 𝑏, 𝑐) =
(𝑎, 𝑏, 𝑎𝑐) ∗ (𝑎, 𝑏, 𝑎𝑐) = 𝑔 ∗ 𝑔,  we have 𝑔 = (𝑎, 𝑏, 𝑎𝑐) is a square root of 𝑓. Now  if order of 

the class containing the form 𝑓  is denoted as 𝑜(𝑓) , then (𝑔𝑜(𝑓))2 = 𝑔2𝑜(𝑓) = ( 𝑓)2𝑜(𝑓) =

𝑓𝑜(𝑓) = 𝐼𝑑 . Therefore  the reduced form of 𝑔𝑜(𝑓)  is an ambiguous form. Now using this 

ambiguous form, we implement factorization on a composite number given as 𝑁 = 𝑝𝑞 for 𝑝, 𝑞 

distinct odd prime factors accordingly as 𝑁 ≡ 3(mod4) or 𝑁 ≡ 1(mod4). 

 

In the case when 𝑁 ≡ 3(mod4), we have 𝑑 = −𝑁 and the reduced form of 𝑔𝑜(𝑓) is of the form 

(
1

4
(𝑢 + 𝑣),

1

2
(𝑣 − 𝑢) ,

1

4
(𝑢 + 𝑣)) , 0 <

1

3
𝑣 ≤ 𝑢 ≤ 𝑣  or (𝑢, 𝑢 ,

1

4
(𝑢 + 𝑣)) , 0 < 𝑢 ≤

1

3
(𝑣)  with 

𝑑 = −𝑢𝑣 and gcd(𝑢, 𝑣) = 1 i.e., 𝑢𝑣 = −𝑑 = 𝑁 thus factoring 𝑁 as 𝑢𝑣. 

 

In the case when 𝑁 ≡ 1(mod4), for any 𝑓 ≠ (2,2,
1+𝑁

2
), we have 𝑑 = −4𝑁 and the reduced 

form of 𝑔𝑜(𝑓)  is of the form (
1

2
(𝑢 + 𝑣)  , (𝑣 − 𝑢) ,

1

2
(𝑢 + 𝑣)) ,   0 <

1

3
𝑣 ≤ 𝑢 ≤ 𝑣  or 

(2𝑢, 2𝑢,
1

2
(𝑢 + 𝑣)) ,0 < 𝑢 ≤

1

3
(𝑣), with 

−𝑑

4
= −𝑢𝑣 and gcd(𝑢, 𝑣) = 1 i.e., 𝑢𝑣 =

−𝑑

4
= 𝑁 thus 

factoring 𝑁 as 𝑢𝑣 in this case as well.[11] 

 

Note if 𝑔𝑜(𝑓) is an ambiguous form equivalent to identity or (2,2, (N+1)/2) (in the case when 

𝑁 ≡ 1(mod4)), the ambiguous form leads to trivial factorization. So if such ambiguous is not 

obtained then we go for another choice of square form f. 

 

 

Example 2.2.2 : To find factors of  N = 41347:  
 

For N = 41347  since 𝑁 ≡ 3 mod4 , we have for  𝑑 = −𝑁 = −413477.  The group 𝒞 𝑑  is 

with the identity class as < 1,1,10337 > . Take  𝑓 =  49,3,211  a square binary quadratic form 

with 𝑎 = 72 = 𝑧2, then by above theorem 2.1.2 we have 𝑓 =  49,3,211 =  7,3,1477 ∗
 7,3,1477  with 𝑔 =  7,3,1477  the square root of 𝑓.  By above theorem 2.2.1,  as 𝑔𝑜 𝑓  is 

an ambiguous form we proceed to compute 𝑔𝑚 , using the composition and reduction process as 

given in the below algorithm for m = 1,2.... . We have   
 

 𝑔2 = 𝑓 =    (49,3,211),  𝑔3 = 𝑔2 ∗ 𝑔 =  < 49,3,211 >∗< 7,3,1477 > =     < 343,199,59 >. 

 

The reduced form of 𝑔3 is  (59,37, 181). So on repeating the process, at 12
th  

 iteration, we 

have 𝑔13 = < 581,−445,103 >  with its reduced form equal to (103,33,103),  an ambiguous 

form of the type (a,b,a).  Now by implementing the lemma we have the factorization of given N 

by cosidering (103,33,103) as the form (
1

4
(𝑢 + 𝑣),

1

2
(𝑣 − 𝑢),

1

4
(𝑢 + 𝑣),  for −𝑑 = 𝑢𝑣 then  
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we have  𝑢 = 173 and 𝑣 = 239,  with N = −𝑑 = 𝑢𝑣 = 173 ⋅ 239.  

 

 

2.3  Algorithm to find the ambiguous form 

 
Step1: Start  

Step2: Input the values of 𝑎, 𝑏, 𝑐 such that 𝑎 = 𝑡2 where 𝑡 is a positive integer.  

Step3:Calculate discriminant 𝑑 = 𝑏2 − 4𝑎𝑐 

Step4: 

If 𝑑 ≡ 0(𝑚𝑜𝑑4) , then compute 𝐼𝑑 = (1,0,
−𝑑

4
) 

Else 

{ 

If 𝑑 ≡ 1(𝑚𝑜𝑑)4 , then compute 𝐼𝑑 = (1,1,
(1−𝑑)

4
) 

} 

Step5: Find the reduced form of (𝑎, 𝑏, 𝑐) as below and verify whether the result ≠ 𝐼𝑑  otherwise 

go to step 1.  

Step6: Let the input of reduction process be (𝑎𝑟 , 𝑏𝑟 , 𝑐𝑟) =(𝑡, 𝑏, 𝑡𝑐) 

Step7: [ Reduction process ] 

while(𝑎𝑟 > 𝑐𝑟  or 𝑎𝑏𝑠(𝑏𝑟) > 𝑎𝑟  or (𝑎𝑟 == 𝑐𝑟  and 𝑏𝑟 < 0) or (𝑏𝑟 == −𝑎𝑟  and 𝑎𝑟 < 𝑐𝑟)) 

If(𝑎𝑟 > 𝑐𝑟  or (𝑎𝑟 == 𝑐𝑟  and 𝑏𝑟 < 0)) then (𝑎𝑟 , 𝑏𝑟 , 𝑐𝑟) = (𝑐𝑟 , −𝑏𝑟 , 𝑎𝑟) 

If(𝑎𝑏𝑠(𝑏𝑟) > 𝑎𝑟  or (𝑏𝑟 == −𝑎𝑟  and 𝑎𝑟 < 𝑐𝑟)) then  

Compute 𝑚 =
𝑏𝑟

2𝑎𝑟
 and 𝑏′𝑟  as below  

 𝐿1: 𝑏′𝑟 = 𝑏𝑟 − 2𝑎𝑟𝑚, (1) 
 𝐼𝑓𝑎𝑏𝑠(𝑏′

𝑟) <= 𝑎𝑟)then𝑏𝑟 = 𝑏′𝑟  (2) 
 Else Repeat the steps from L1 by incrementing𝑚 by 1 (3) 

 Compute𝑐𝑟 =
𝑏𝑟

2−𝑑

4𝑎𝑟
 (4) 

 Return (𝑎𝑟 , 𝑏𝑟 , 𝑐𝑟) 

Step8: with the obtained reduced form (𝑎𝑟 , 𝑏𝑟 , 𝑐𝑟) find the composition as below. 

Step9:[Composition process]  

Let (𝑎1, 𝑏1, 𝑐1) and (𝑎2, 𝑏2, 𝑐2) be two primitive quadratic forms such that  

 

 𝑑 = 𝑏1
2 − 4𝑎1𝑐1 = 𝑏2

2 − 4𝑎2𝑐2 

For the first iteration 𝑎1 = 𝑎2 = 𝑡, 𝑏1 = 𝑏2 = 𝑏, 𝑐1 = 𝑐2 = 𝑡𝑐 

For the next iterations 𝑎1 = 𝑎𝑟 , 𝑏1 = 𝑏𝑟 , 𝑐1 = 𝑐𝑟  where 𝑎𝑟 , 𝑏𝑟 , 𝑐𝑟  output of reduced form 

obtained from step 10 𝑎2, 𝑏2, 𝑐2 is same as first iteration. 

We compute 𝑎3, 𝑏3, 𝑐3 such that  

< 𝑎1, 𝑏1, 𝑐1 >∗< 𝑎2, 𝑏2, 𝑐2 >=< 𝑎3, 𝑏3, 𝑐3 > as follows  

Evaluate  

 

 𝑒 = gcd(𝑎1, 𝑎2, (𝑏1 + 𝑏2)/2) 

 𝑎3 =
(𝑎1𝑎2)

𝑒2  

𝑏3 is an integer solution that satisfies  

 𝑏3
2 ≡ 𝑑(𝑚𝑜𝑑(

4𝑎1𝑎2

𝑒2
)) 
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 𝑏3 ≡ 𝑏1(𝑚𝑜𝑑2𝑎1/𝑒) 
 

 𝑏3 ≡ 𝑏2(𝑚𝑜𝑑2𝑎2/𝑒) 
 

 𝑐3 =
(𝑏3

2−𝑑)

4𝑎3
 

Step10: Go to step 7 and let the input of reduction process be 𝑎𝑟 = 𝑎3, 𝑏𝑟 = 𝑏3, 𝑐𝑟 = 𝑐3.  

Step11: Repeat step 9 by inputting the reduced form (𝑎𝑟 , 𝑏𝑟 , 𝑐𝑟) obtained from step 7  

until 𝑏𝑟 == 0 or 𝑎𝑟 == 𝑏𝑟  or 𝑎𝑟 == 𝑐𝑟  which results to an ambiguous form.  

Step12:Stop  

 

 

 

3. Conclusion: 
 

In Shank’s Class Group Factorization Method, the factorization method is based on 

composition of binary quadratic forms and computation of class number 𝑕(𝑑). In the method 

proposed by us, the factorization is based on finding the square root of square binary quadratic 

form and depends on the order of the class containing the square form. The complexity is based on 

composition and reduction algorithms of binary quadratic forms. For any form (a, b, c) the 

reduction depends on 𝑎 𝑑/3  and hence the complexity is 𝑂( 𝑑).  The advantage of the 

proposed method is that it does not depend on the computation of the class number 𝑕(𝑑). 
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