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ABSTRACT 

 In the present paper, the unsteady flow of a dusty conducting viscous incompressible 

fluid in a long rectangular channel under the influence of uniform magnetic field and a time 

dependent pressure gradient has been studied.  The particular cases when the pressure 

gradient is (i) an absolute constant,(ii) periodic function of time, (iii) an exponentially 

decreasing function of time and (iv) Ct𝑒−𝜆𝑡 , have been discussed in detail. 

KEYWORDS: Magnetohydrodynamic flow, Dusty fluid, Pressure gradient rectangular 

channel. 

INTRODUCTION 

 Interest in problem of mechanics of systems with more than one phase has developed 

rapidly in recent years. The study of fluids having uniform distribution of solid spherical 

particles is of interest in a wide range of areas of technical importance. These areas include 

fluidization (flow through packed beds), flow in rocket tubes, where small carbon or metallic 

fuel particles are present, environmental pollution, the process by which rain drops are 

formed by the coalescence of small droplets, which might be considered as solid particles for 

the purpose of examining their movement prior to coalescence, combustion, and more 

recently, blood flow in capillaries.   

 Saffman (1962) has expressed a model equation describing the influence of dust 

particles on the motion viscous fluids. Later on the large number of dusty viscous flow 

problems have been investigated by Marble (1963); Michael and  Miller (1966); Michael and 

Norey (1968); Verma and Mathur (1973); Gupta (1979); Srivastava (2002); Sanyal and 

Dasgupta (2002); Gireesha and Bagewadi (2003,2007);Gireesha, Bagewadi and Venkatesh 

(2007); Gireesha,Venkatash and Bagewadi (2009) and Elangovan and Ratchagar (2009) etc. 

through channels of various cross-sections under the influence of time dependent pressure 

gradient. The basic theory of multiphase fluid flow has been given by Soo (1967). 
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  Singh, Lal and Sharma (1990); Bhatnagar and Bhardwaj (1998); Mal and Sengupta 

(2003); Mishra and Bhola (2005); Varshney and Singh (2006); Kumar, Jha and Shrivastava 

(2006,2006); Singh, Singh and Jha (2009); Agrawal, Agrawal and Varshney (2012) , Agrawal 

and Singh (2012)  etc. have discussed the unsteady flow of dusty fluid through porous 

medium in the different type of channels with time dependent pressure gradient. Tripathi, 

Sharma and Singh (2013) studied magnetohydrodynamic unsteady flow of a dusty 

conducting fluid through porous medium in a rectangular channel with time dependent 

pressure gradient. Rathod and Parveen (2015) have discussed the time dependent pressure 

gradient effect on unsteady MHD couette flow and heat transfer of a couple stress fluid. 

  The present paper is concerned with the flow problem of a conducting viscous 

incompressible fluid with embedded non-conducting small identical spherical particles in a 

long rectangular channel under the influence of uniform magnetic field applied 

perpendicularly to the flow of fluid and a time varying pressure gradient, taking the fluid and 

dust particles to be initially at rest. The expressions for velocities of conducting fluid and 

non-conducting particles are obtained by using Finite Fourier Cosine and Laplace transforms. 

The particular cases when (i)the pressure gradient is an absolute constant, (ii)the the pressure 

gradient is a periodic function of time, (iii) the pressure gradient is an exponentially 

decreasing function of time, and (iv) the pressure gradient is Cte−λt , have also been discussed 

in detail 

          EQUATION OF THE PROBLEM 

Using the rectangular cartesian coordinate system, the walls of the channel are taken 

to be the planes x = ± a and y = ± b. The fluid and dust particles velocities u(x,y,t) and 

v(x,y,t) respectively, are in z-direction i.e. along the axis of rectangular channel. A uniform 

magnetic field is applied perpendicular to the planes y = ± b of rectangular channel. Taking 

the number density of non-conducting dust particles to be constant throughout the motion, the 

appropriate momentum equations of motion, after introducing the electromagnetic force  

obtained by Soo (1968), are: 

∂u

∂t
= −

1

ρ

∂p

∂z
+ ν 

∂2u

∂x2
+

∂2u

∂y2
 +

K0N0

ρ
 v − u −

σB0
2

ρ
u                                                      … (1) 

∂v

∂t
=

K0

M
(u − v) −

k′

ρ

∂p

∂z
                                                                                                          … (2) 

where u and v denote the velocities of fluid and dust particle respectively; p is the fluid 

pressure; M, the mass of a particle; K0, the Stokes resistance coefficient, which for spherical 

particle of radius  r is 6πμr , μ being the viscosity of the fluid; N0, the number density of 

particle; t, the time; ρ, ρ
p

 and ρ 
p
 are density of fluid, mass density of particle and material 

density of the particle respectively; υ = μ/ρ, the kinematic viscosity of the fluid; B0 , the 

magnetic inductivity; σ, the electric conductivity,  k′ = ρ/ρ
p
. 
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 It is assumed that effect of the induced magnetic field and the electric field produced 

by motion of the electrically conducting field is negligible and no external field is applied. 

The dust particles are non-conducting. 

Introducing the non-dimensional quantities  

x∗  =  
x

a
 ,  y∗  =  

y

a
 ,  z∗  =  

z

a
 ,  p∗  =  

a2

ρν2
p ,  t∗ =

ν

a2
t , 

   u∗  =  
ua

ν
 ,     v∗  =  

va

ν
 

Equations (1) and (2) become (dropping stars) 

∂u

∂t
= −

∂p

∂z
+  

∂2u

∂x2
+

∂2u

∂y2
 + β v − u − H2u                                                                       … (3) 

∂v

∂t
= γ′(u − v) − k′Q

∂p

∂z
                                                                                                              … (4) 

where 

β =
K0
′

γ
=

N0K0a2

ρν
 ,  K0

′ =
N0M

ρ
 ,   γ =

Mν

K0a2
∂ ,  γ′ =

1

γ
 ,   Q =

ν

a
 

and H = aB0 
σ

μ
    (Hartmann number) 

Initially, the fluid and particles are rest. The flow takes place under the influence of 

time dependent pressure gradient with no-slip boundary conditions. From symmetric 

consideration, the flow in region x ≥ 0 , y ≥ 0 , is considered. Accordingly, the boundary 

conditions are: 

 

 

t > 0     𝑢(1, 𝑦, 𝑡) = 0           0 ≤ 𝑦 ≤ ℎ 

                v(1, y, t) = 0                                                                                                                     … (5) 

                   
∂u

∂x
= 0 ,   

∂v

∂x
= 0           at x = 0    

And 
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                 u(x, h, t) = 0           0 ≤ x ≤ 1            

                 v(x, h, t) = 0                                                                                                                    … (6) 

                    
∂u

∂y
= 0,   

∂v

∂y
= 0           at y = 0 

where   h = b/a 

SOLUTION OF THE PROBLEM 

 For solving the problem, we choose the finite cosine transform defined as  

u (m, y, t) =  u(x, y, t) cos qm x dx                                                                                            … (7)

1

0

 

u (x, n, t) =  u(x, y, t) cos qny dy                                                                                              … (8)

h

0

 

where 

qm =
2m + 1

2
 π, qn =

2n + 1

2h
π 

         It can be shown that the inversion formula for finite cosine transforms defined by (7) 

and (8) are given by 

u(x, y, t) = 2  u (m, y, t) cos qm x                                                                                   … (9)

∞

m=0

 

and 

u(x, y, t) =
2

h
 u (x, n, t) cos qny                                                                                            … (10)

∞

n=0

 

         Multiplying equations (3) and (4)  by cos qm x. cos qny   and then integrating twice 

within the limits 0 to 1 and 0 to h and using the boundary conditions (5) and (6), it is found 

∂U

∂t
=

 −1 m+n

qm qn
f(t) − (qm

2 + qn
2 )U + β(V − U) − H2U                                                      … (11) 

∂V

∂t
= γ′(U − V) − 

 −1 m+nk′Q

qm qn
f(t)                                                                                      … (12) 

where 
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U =   u(x, y, t) cos qm x. cos qny dx dy

h

0

1

0

 

V =   v(x, y, t) cos qm x. cos qny dx dy

h

0

1

0

 

and −
∂p

∂z
= f(t) 

         Again, applying Laplace transform to equations (11) and (12) under the transform initial 

condition 

 U = 0,   V = 0, at   t = 0 

It is found 

sU =
 −1 m+n

qm qn
f (s) − (qm

2 + qn
2 )U + β(V − U ) − H2U                                                      … (13) 

sV = γ′(U − V ) − 
 −1 m+nk′Q

qm qn
f (s)                                                                                      … (14) 

where  U , V  and f (s) are the Laplace transforms of the respective quantities. 

 Solving equations (13) and (14), it is found 

U =
 −1 m+n

qm qn

(s + γ′ − k′Qβ)f (s)

 s − α1  s − α2 
                                                                                         … (15) 

V =
 −1 m+n

qm qn
 

γ′ s + γ′ − k′Qβ 

 s + γ′  s − α1  s − α2 
−

k′Q

 s + γ′ 
 f (s)                                                … (16) 

where 

α1 = −
1

2
  γ′ + β + H2+qm

2 + qn
2   +   γ′ + β + H2+qm

2 + qn
2  2   

             −4γ′ qm
2 + qn

2 + H2  1/2  

and 

α2 = −
1

2
  γ′ + β + H2+qm

2 + qn
2   −   γ′ + β + H2+qm

2 + qn
2  2   

             −4γ′ qm
2 + qn

2 + H2  1/2  

are the roots of the equation 

s2 +  γ′ + β + H2+qm
2 + qn

2  s + γ′ H2+qm
2 + qn

2  = 0 
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 Now to obtain u and v, it  may invert the Laplace transform by convolution theorem 

and then applying the inversion formulae for the finite cosine transforms, it is found 

u =
4

h
  

 −1 m+n

qm qn
  f(t − η) A1eα1η + A2eα2η dη

t

0

 

∞

n=0

∞

m=0

 

        × cos qm x. cos qny                                                                                                             … (17) 

and 

v =
4

h
  

 −1 m+n

qm qn
  f(t − η) γ′ B1eα1η + B2eα2η + B3e−γ′η dη

t

0

 

∞

n=0

∞

m=0

 

        × cos qm x. cos qny                                                                                                              … (18) 

where 

A1 =
 α1 + γ′ − k′Qβ 

 α1 − α2 
 , A2 = −

 α2 + γ′ − k′Qβ 

 α1 − α2 
, 

B1 =
A1

 α1 + γ′ 
 ,     B2 =

A2

 α2 + γ′ 
 ,    B3 = − 1 +

γ′β

 α1 + γ′  α2 + γ′ 
 k′Q 

PARTICULAR CASES 

(i) When the pressure gradient is constant 

 Substituting f(t)=C (where C is an absolute constant) in the above equation and on 

simplifying,  velocities of the  fluid and dust particles are 

u =
4C

h
  

 −1 m+n

qm qn
 
γ′ − k′Qβ

α1α2
+

A1

α1
eα1t +

A2

α2
eα2t 

∞

n=0

∞

m=0

cos qm x. cos qny  

                                                                                                                                               … (19) 

v =
4C

h
  

 −1 m+n

qm qn

∞

n=0

∞

m=0

  
γ′ − k′Qβ

α1α2
−

k′Q

γ′
 +

γ′B1

α1
eα1t   

         +  γ
′B2

α2
eα2t −

k′QB3

γ′
e−γ′t  cos qm x. cos qny                                                                … (20) 

(ii) When the Pressure Gradient  is periodic Function of Time 

 Substituting f(t) = C sinωt (where C and ω are constants) in the above equations and 

on simplifying,  velocities of the fluid and the dust particles are 
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u =
4C

h
  

 −1 m+n

qm qn
 

ωA1

 α1
2 + ω2 

eα1t +
ωA2

 α2
2 + ω2 

eα2t  
∞

n=0

∞

m=0

 

        +   
ω2 +  γ′ − k′Qβ 2

 α1
2 + ω2  α2

2 + ω2 
 

1/2

sin ωt − ψ
1
   cos qm x. cos qny                                … (21) 

and 

v =
4C

h
  

 −1 m+n

qm qn
 

γ′ωB1

 α1
2 + ω2 

eα1t +
γ′ωB2

 α2
2 + ω2 

eα2t +
ωB3

 γ′2 + ω2 
e−γ′t  

∞

n=0

∞

m=0

 

        + γ′   
ω2 +  γ′ − k′Qβ 2

 α1
2 + ω2  α2

2 + ω2  γ′2 + ω2 
 

1/2

sin ωt − ψ
2
   

        −  k′Q

 γ′2 + ω2 1/2
sin ωt − ψ

3
  cos qm x. cos qny                                                        … (22) 

respectively, 

where 

ψ
1

= tan−1  −
ω

α1
 + tan−1  −

ω

α2
 − tan−1

ω

 γ′ − k′Qβ 
  , 

ψ
2

= tan−1  −
ω

α1
 + tan−1  −

ω

α2
 + tan−1  

ω

γ′
 − tan−1

ω

 γ′ − k′Qβ 
  , 

ψ
3

= tan−1  
ω

γ′
  

(iii) When the Pressure Gradient is Exponentially Decreasing Function Time                          

 Substituting f(t) = Ce−λt  (where C and λ are constants) in the above equations and on 

simplifying, velocities of fluid and dust particles are 

u =
4C

h
  

 −1 m+n

qm qn
 

γ′ − k′Qβ− λ

 α1 + λ  α2 + λ 
e−λt +

A1

 α1 + λ 
eα1t  

∞

n=0

∞

m=0

 

        +  A2

 α2 + λ 
eα2t cos qm x. cos qny                                                                                   … (23) 

and 

v =
4C

h
  

 −1 m+n

qm qn

∞

n=0

∞

m=0

  
γ′ γ′ − k′Qβ− λ 

 γ′ − λ  α1 + λ  α2 + λ 
−

k′Q

 γ′ − λ 
 e−λt   
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         +
γ′B1

 α1 + λ 
eα1t +

γ′B2

 α2 + λ 
eα2t −  k

′QB3

 γ′ − λ 
e−γ′t  cos qm x. cos qny                      … (24) 

respectively. 

(iv)When 𝐟(𝐭) = 𝐂𝐭𝐞−𝛌𝐭 

 The velocities of the fluid and the dust   particles are 

u =
4C

h
  

 −1 m+n

qm qn
 

A1

 α1 + λ 2
eα1t  

∞

n=0

∞

m=0

+
A2

 α2 + λ 2
eα2t 

         +  
γ′ − k′Qβ− λ

 α1 + λ  α2 + λ 
t  

           +
 2λ + α1 + α2  γ

′ − k′Qβ +  α1α2 − λ
2 

 α1 + λ 2 α2 + λ 2
    e−λt   

          × cos qm x. cos qny                                                                                                            … (25) 

and 

v =
4C

h
  

 −1 m+n

qm qn

∞

n=0

∞

m=0

 
γ′B1

 α1 + λ 2
eα1t +

γ′B2

 α2 + λ 2
eα2t  +

B3

 γ′ − λ 2
e−γ′t  

         +  
 γ′ − k′Qβ − λ γ′t

 γ′ − λ  α1 + λ  α2 + λ 
 +

 γ′ − k′Qβ D

α1α2λ
 

         −   k
′Q  γ′ − λ t − 1 

 γ′ − λ 
 e−λt cos qm x. cos qny                                                             … (26) 

respectively, 

where 

D =    α1 − α2  α1 + γ′    α2 + γ′  α1 + λ 2 α2 + λ 2 γ′ − λ 2 γ′ − k′Qβ  

        +α2γ
′λ

2 γ′ − k′Qβ + α1  α2 + γ′  α2 + λ 2 γ′ − λ 2 − α1γ
′λ

2
 

         ×  γ′ − k′Qβ + α2  α1 + γ′  α1 + λ 2 γ′ − λ 2 + α1α2λ
2k′Qβ 

         ×  α1 − α2  α1 + λ 2 α2 + λ 2 + α1α2γ
′ k′Qβ − γ′ + λ  α1 − α2  

         ×   α1 + γ′  α2 + γ′  α1 + λ  α2 + λ  γ′ − λ  /  γ′ − k′Qβ   

         ×    α1 − α2  α1 + γ′  α2 + γ′  α1 + λ 2 α2 + λ 2 γ′ − λ 2  . 
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DISCUSSION 

 Evidently the velocities of fluid and the dust particles will be slower due to the applied 

uniform magnetic field. 

 In the particular case (iv), if we put λ = 0, the velocities of the  fluid and the dust 

particles can be obtained for a linearly time dependent pressure gradient. 

 If H=0, all the velocities expressions for fluid and dust particles can be obtained in the 

absence of magnetic field under the influence of various pressure gradient and also if  K′ = 0, 

the results are in agreement with those of Gupta and Gupta (1976). 
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