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ABSTRACT 

In many sampling involving non negative integer data, the zeros are observed to be significantly 

higher than the expected assumed model. Such models are called zero-one inflated models. The 

zero inflated geometric distribution was recently considered and studied due to its empirical 

needs and application. In this paper, an extension to the case of zero inflated case is considered, 

namely, the zero and one inflated geometric distribution, along with some of its structural 

properties, and estimation of its parameters using the methods of moments and maximum 

likelihood estimators were obtained with three empirical examples as well. 

 

KEYWORDS: Geometric Distribution, Inflated Model, Moments Estimator, Maximum 

likelihood Estimator, Inflated Geometric Distribution. 

 

1. Introduction 

The geometric distribution is a well-known discrete distribution that has been studied by many 

researchers due to its empirical applications. A special case of the geometric distribution arises in 

the researchers literature as a statistical model in application situations involving the frequency 

of the observed zeros, and the zeros and ones jointly, are significantly higher than the predicated 

frequency by the standard distribution, hence, as a result of mis-specifying the proper statistical 

model, leads to the so called the inflated distributions, namely the zero inflated and the zero-one 

inflated, respectively. 

Recently, models based on zero-inflated geometric distribution were studied by many 

researchers. In particular, Pandey and Tiwari [1]uses an inflated geometric model consists of a 

mixture of a displaced geometric distribution and a logarithmic distribution model to estimate the  
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total number of migrants in household cohort (including international migrants) of the rural areas 

of ComillaDistrict of Bangladesh. Saengthong et al [2] introduce the zero inflated negative 

binomial – crack distribution, consists of a mixture of Bernoulli distribution and negative 

binomial distribution, which is an alternative distribution for the excessive zero counts and 

overdispersion, and studied some of its properties and parameter estimates. Sharma and 

Landge[3]used the zero inflated negative binomial regression for modeling heavy vehicle crash 

rate on Indian rural highway.Pandya et al [4]proposed change point model on zero inflated 

geometric distribution to represent thedistribution of count data with change a point and have 

obtain Bays estimates of its parameters.Aryal[5]used an approximation of inflated geometric 

distribution to study the distribution of rural out-migrants from a household in order to help 

planners and policy makers for designing more effective and equitable rural and urban 

policies.Alshkaki[6]introduced an extension to the zero-inflated models, in which not only the 

number of frequencies with zeros is inflated, but the number of frequencies with ones are also 

inflated as well. He called such models zero-one inflated models, he studied its structure 

properties, as well as its relation to the standard and the zero inflated cases.See Zelterman[7], 

Johnson et al [8], and Forbes et al [9]for more details. 

In this paper, we give in Section 2, the definition of the geometric distribution, then, in Section 3, 

we introduce the class of zero-one inflated geometric distribution, and some of its structural 

properties, namely, its mean, variance,andgenerating functions, were given in Section 4.Then in 

Section 5, we consider moment estimators method of itsparameters, followed by the maximum 

likelihood estimators method for its parameters also in Section 6.Finally, empirical examples 

consist of estimation of the parameters of the zero-oneinflated geometric distribution as well as 

fitting its frequencies were presented in Section 7, using three different sets of data representing; 

migrants in household cohort data, consumer credit behavior data, and heavy vehicle traffic 

accident data.Finally, some concluding remarks were given in Section 8. 

 

2.GeometricDistribution 

Let θ ∈  0,1 , then the discrete random variable (rv) X having probability mass function (pmf); 

P X = x =   1 − θ θ
x                           x = 0, 1, 2, …                          (2.1) 

is said to have a geometric distribution (GD) with parameter θ,and will denote 

thatby writing X ∼ GD(θ). 
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(3.1) 

3. Zero-One Inflated Geometric Distribution 

Let X ∼ GD(θ)as given in (2.1), let α ∈  0,1  be an extra proportion added to the proportion of 

zero of the rv X, and letβ ∈  0,1  be an extra proportion added to the proportion of ones of the rv 

X, such that 0 < 𝛼 + 𝛽 < 1, then the rv Z having pmf defined by; 

𝑃 𝑍 = 𝑧 =  

 
 
 
 

 
 
 

𝛼 +  1 − 𝛼 − 𝛽 (1 − 𝜃),                    𝑧 = 0                    

𝛽 +  1 − 𝛼 − 𝛽 (1 − 𝜃)𝜃,                    𝑧 = 1                   

 1 − 𝛼 − 𝛽 (1 − 𝜃)𝜃𝑧 ,                              𝑧 = 2, 3, 4, …      

0                                                          𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒,        

  

is said to have a zero-one inflated geometricdistribution, and will denotethat by writing Z ∼

ZOIGD(θ; α, β). 

Note that, if β → 0, the (3.1) reduces to the form of the zero-inflated GD. Similarly, the case with 

α → 0 and β → 0, reduces to the standard case of GD. 

 

4.Some Structural Properties 

Let the rv 𝑍 ∼ ZOIGD(𝜃; 𝛼, 𝛽), then it is easy to find that; 

𝐸 𝑍 =  𝛽 +  1 − 𝛼 − 𝛽  
𝜃

1−𝜃
 (4.1) 

 =  𝛽 +  1 − 𝛼 − 𝛽 𝐸(𝑋) 

=  𝛽 1 − 𝐸(𝑋) + 𝐸(𝑌) 

 =  𝛽  
1 − 2𝜃

1 − 𝜃
 + 𝐸(𝑌) 

wherethe rv X ∼ GD(θ) andthe rv Y∼ ZOIGD 𝜃; 𝛼, 0 ,that is a zero-inflated GD, and that;  

𝑉𝑎𝑟 𝑍 =  𝛽 1 − 𝛽 +  1 − 2𝛽  1 − 𝛼 − 𝛽  
𝜃

1 − 𝜃
 +  1 + 𝛼 + 𝛽  1 − 𝛼 − 𝛽  

𝜃

1 − 𝜃
 

2

 

 =  𝛽 1 − 𝛽 +  1 − 2𝛽  1 − 𝛼 − 𝛽  
𝜃

1 − 𝜃
 + 𝜃 1 −  𝛼 + 𝛽 2 𝑉𝑎𝑟 𝑋  

  = 𝑉𝑎𝑟 𝑌 −  1 − 𝛼 𝑉𝑎𝑟 𝑋 +  𝛽 1 − 𝛽 +   2 − 𝛽  1 − 𝛼 − 𝛽 − 𝛼𝛽  
𝜃

1 − 𝜃
  

 = 𝑉𝑎𝑟 𝑌 + 𝛽 1 − 𝛽 +   2 − 𝛽  1 − 𝛼 − 𝛽 − 𝛼𝛽  
𝜃

1 − 𝜃
 −  1 − 𝛼 

𝜃

 1 − 𝜃 2
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The probability generating function GZ s  and the moment generating functionMZ t , are 

respectively, given by: 

𝐺𝑍 𝑠 = 𝐸(𝑠𝑍)                                                                 

              = 𝛼 + 𝛽𝑠 +  1 − 𝛼 − 𝛽  
1 − 𝜃

1 − 𝜃𝑠
                                            (4.3) 

and 

𝑀𝑍 𝑡 = 𝐸 𝑒𝑡𝑍  

              = 𝛼 + 𝛽𝑒𝑡 +  1 − 𝛼 − 𝛽  
1 − 𝜃

1 − 𝜃𝑒𝑡
  

 

5.MomentEstimators 

Using the moment generating function, or obtaining them directly, the first three distribution 

moments about the origin for the ZOIGDcan be found to be, 

𝜇1
′ =   𝛽 +  1 − 𝛼 − 𝛽  

𝜃

1 − 𝜃
  

𝜇2
′ =   𝛽 +  1 − 𝛼 − 𝛽  

𝜃(1 + 𝜃)

 1 − 𝜃 2
  

and, 

𝜇3
′ =  𝛽 +  1 − 𝛼 − 𝛽 𝜃  

1 + 4𝜃 + 𝜃2)

 1 − 𝜃 3
  

Letz1 , z2, … , znbe a random sample from ZOIGD as given by (3.1), and let, 

𝑚𝑘
′ =  

 𝑧𝑖
𝑘𝑛

𝑖=1

𝑛
,                  𝑘 = 1, 2, 3.                                           (5.1) 

betheir sample moments about the origin, then solving the following simultaneous: 

𝑚1
′ = 𝛽 +  1 − 𝛼 − 𝛽  

𝜃

1 − 𝜃
                                                (5.2) 

𝑚2
′ =  𝛽 +  1 − 𝛼 − 𝛽 

𝜃 1 + 𝜃 

 1 − 𝜃 2
                                               (5.3) 

𝑚3
′ =  𝛽 +  1 − 𝛼 − 𝛽 𝜃  

1 + 4𝜃 + 𝜃2

 1 − 𝜃 3
                                   (5.4) 

In order to solve (5.2) to (5.4) in term of θ, α,  and β, let us consider the following way. It is easy 

to findthat the following factorial moment of the rv Z ∼ ZOIGD(θ; α, β) defined by  

𝜇 2 = 𝐸 𝑍 𝑍 − 1   

𝜇 3 = 𝐸 𝑍 𝑍 − 1  𝑍 − 2   
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Are given by 

𝜇 2 =  2 1 − 𝛼 − 𝛽  
𝜃

1−𝜃
 

2

     (5.5) 

𝜇 3 =  6 1 − 𝛼 − 𝛽  
𝜃

1−𝜃
 

3

     (5.6) 

Let fork =  2, 3,…, 

𝑚 𝑘 
′ =  

 z𝑖 z𝑖 − 1  z𝑖 − 2 … (z𝑖 − 𝑘 + 1)𝑛
𝑖=1

𝑛
,                     (5.7) 

be k
th

sample factorial moments, then equating the distributional factorial moments μ 2 and μ 3  

given (5.5) and (5.6), respectively, with their sample factorial moments given by (5.7),we have, 

𝑚 2 
′ =  2 1 − 𝛼 − 𝛽  

𝜃

1 − 𝜃
 

2

 5.8  

𝑚 3 
′ =  6 1 − 𝛼 − 𝛽  

𝜃

1 − 𝜃
 

3

 

It follows that, 

m 3 
′

m 2 
′

 =  3  
θ

1 − θ
                                                                            (5.9) 

Hence, 

𝜃 =  
𝑚 3 

′

𝑚 3 
′ + 3𝑚 2 

′
 

Or equivently, 

𝜃  =  
𝑚3

′ − 3𝑚2
′ + 2𝑚1

′

𝑚3
′ − 𝑚1

′
                                                         (5.10) 

From (5.8), we have that, 

1 − 𝛼 − 𝛽 =  
𝑚 2 

′

2
 

1 − 𝜃

𝜃
 

2

                                                     (5.11) 

And hence, it follows from (5.2) with the using of (5.11) that, 

𝛽 =  𝑚1
′ −

𝑚 2 
′

2
 

1 − 𝜃

𝜃
                                                              (5.12) 

Therefore, using (5.10), (5.12) reduces to,  

𝛽 =  𝑚1
′ −

3 𝑚2
′ − 𝑚1

′  
2

2 𝑚3
′ − 3𝑚2

′ + 2𝑚1
′  

                                               (5.13) 
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Finally, from (5.11), we have that, 

𝛼 =  1 − 𝛽 −
𝑚 2 

′

2
 

1 − 𝜃

𝜃
 

2

                                                       (5.14) 

It follows from (5.14) with the using of (5.13) and (5.10) that, 

𝛼 =  1 − 𝑚1
′ +

3 𝑚3
′ + 5𝑚1

′   𝑚2
′ − 𝑚1

′  
2

2 𝑚3
′ − 3𝑚2

′ + 2𝑚1
′  

2                              (5.15) 

Hence, the moment estimates (ME) of the parameters 𝜃, 𝛼 and 𝛽 are given by (5.10), (5.15) and 

(5.13), respectively. 

 

6.Maximum LikelihoodEstimators 

Let z1 , z2, … , zn  be a random sample from ZOIGD as given by (3.1), and let for i=1, 2, … n,  

αi =   
1            if zi = 0,
0        otherwise

  

and 

𝛽𝑖 =   
1          𝑖𝑓 𝑧𝑖 = 1,
0        𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  

Then, for i=1, 2, … , n, (3.1) can be written, for zi = 0, 1, 2, …, in the following form; 

𝑃 𝑍𝑖 = 𝑧𝑖 =  𝛼 +  1 − 𝛼 − 𝛽 (1 − 𝜃) 𝛼𝑖 𝛽 +  1 − 𝛼 − 𝛽 (1 − 𝜃)𝜃 𝛽𝑖  

  1 − 𝛼 − 𝛽 (1 − 𝜃)𝜃𝑧𝑖 1−𝛼𝑖−𝛽𝑖  

Hence, the likelihood function L = L(θ, α, β; z1, z2 , … , zn)will be, 

𝐿 =   𝛼 +  1 − 𝛼 − 𝛽 (1 − 𝜃) 𝛼𝑖

𝑛

𝑖=1

 𝛽 +  1 − 𝛼 − 𝛽 (1 − 𝜃)𝜃 𝛽𝑖  

  1 − 𝛼 − 𝛽 (1 − 𝜃)𝜃𝑧𝑖 1−𝛼𝑖−𝛽𝑖  

        =  𝛼 +  1 − 𝛼 − 𝛽  1 − 𝜃  𝑛0 𝛽

+  1 − 𝛼 − 𝛽  1 − 𝜃 𝜃 𝑛1    1 − 𝛼 − 𝛽 (1 − 𝜃)𝜃𝑧𝑖 𝑐𝑖

𝑛

𝑖=1

 

where 𝑐𝑖 = 1 − 𝛼𝑖 −  𝛽𝑖 , 𝑛0 =  𝛼𝑖
𝑛
𝑖=1 𝑎𝑛𝑑𝑛1 =  𝛽𝑖

𝑛
𝑖=1 . Note that 𝑛0 and 𝑛1 represents, 

respectively, the number of zeros and the number of ones in the sample. Therefore, 

𝑙𝑜𝑔 𝐿 = 𝑛0𝑙𝑜𝑔 𝛼 +  1 − 𝛼 − 𝛽  1 − 𝜃  + 𝑛1𝑙𝑜𝑔 𝛽 +  1 − 𝛼 − 𝛽 (1 − 𝜃)𝜃 

+ nc log 1 − α − β + nc𝑙𝑜𝑔 1 − θ +  ci

n

i=1

zi log θ  
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It follows that, 

𝜕

𝜕𝛼
𝑙𝑜𝑔𝐿 =

𝑛0𝜃

𝛼 + (1 − 𝛼 − 𝛽) 1 − 𝜃 
−

𝑛1 1 − 𝜃 𝜃

𝛽 +  1 − 𝛼 − 𝛽  1 − 𝜃 𝜃
−

𝑛𝑐

1 − 𝛼 − 𝛽
              (6.1) 

And hence,  

𝜕2

𝜕𝛼2
𝑙𝑜𝑔𝐿 = −

𝑛0𝜃
2

 𝛼 + (1 − 𝛼 − 𝛽) 1 − 𝜃  2
−

𝑛1  1 − 𝜃 𝜃 2

 𝛽 + (1 − 𝛼 − 𝛽) 1 − 𝜃 𝜃 2
−

𝑛𝑐

 1 − 𝛼 − 𝛽 2
 

Therefore,
∂2

∂α2
logL < 0, which indicates that L has a local maximum at α. Similarly,  

𝜕

𝜕𝛽
𝑙𝑜𝑔𝐿 = −

𝑛0 1 − 𝜃 

𝛼 +  1 − 𝛼 − 𝛽  1 − 𝜃 
+

𝑛1 1 −  1 − 𝜃 𝜃 

𝛽 +  1 − 𝛼 − 𝛽  1 − 𝜃 𝜃
−

𝑛𝑐

1 − 𝛼 − 𝛽
          (6.2) 

𝜕2

𝜕𝛽2
𝑙𝑜𝑔𝐿 = −

𝑛0 1 − 𝜃 2

 𝛼 +  1 − 𝛼 − 𝛽  1 − 𝜃  2
−

𝑛1 1 −  1 − 𝜃 𝜃 2

 𝛽 +  1 − 𝛼 − 𝛽  1 − 𝜃 𝜃 2
−

𝑛𝑐

 1 − 𝛼 − 𝛽 2
 

And hence, 
∂2

∂β
2 logL < 0, which indicates that L has a local maximum at β.Finally,  

𝜕

𝜕𝜃
𝑙𝑜𝑔𝐿 = −

𝑛0 1 − 𝛼 − 𝛽 

𝛼 +  1 − 𝛼 − 𝛽  1 − 𝜃 
+

𝑛1 1 − 𝛼 − 𝛽  1 − 2𝜃 

𝛽 +  1 − 𝛼 − 𝛽  1 − 𝜃 𝜃
 −

𝑛𝑐

1 − 𝜃
 

 +
 𝑐𝑖

𝑛
𝑖=1 𝑧𝑖 

𝜃
                                                                                                 (6.3) 

with, 

𝜕2

𝜕𝜃2
𝑙𝑜𝑔𝐿 = −

𝑛0 1 − 𝛼 − 𝛽 2

 𝛼 +  1 − 𝛼 − 𝛽  1 − 𝜃  2
−

𝑛1 1 − 𝛼 − 𝛽 2 1 − 2𝜃 2

 𝛽 +  1 − 𝛼 − 𝛽  1 − 𝜃 𝜃 2
                         

−
2𝑛1 1 − 𝛼 − 𝛽 

 𝛽 +  1 − 𝛼 − 𝛽  1 − 𝜃 𝜃 2
−

𝑛𝑐

 1 − 𝜃 2
−  

 𝑐𝑖
𝑛
𝑖=1 𝑧𝑖 

𝜃2
 

Hence, 
∂2

∂θ
2 logL < 0, which indicates that L has a local maximum at θ. 

Letting 
∂

∂α
logL = 0 ,  we have from (6.1) that 

1 − 𝛼 − 𝛽 =  
𝑛𝑐

𝑛0

𝑝0
𝜃 −

𝑛1

𝑝1
 1 − 𝜃 𝜃

                                          (6.4) 

where,  

𝑝0 =  𝛼 +  1 − 𝛼 − 𝛽  1 − 𝜃  ,                                            (6.5) 

and  

𝑝1 = 𝛽 +  1 − 𝛼 − 𝛽  1 − 𝜃 𝜃                                            (6.6) 
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Setting 
∂

∂θ
logL = 0, then (6.3) reduces, with the using of (6.5) and (6.6), to; 

−
𝑛0

𝑝0

 1 − 𝛼 − 𝛽 +
𝑛1

𝑝1

 1 − 𝛼 − 𝛽  1 − 2𝜃 =
𝑛𝑐

1 − 𝜃
−

 𝑐𝑖
𝑛
𝑖=1 𝑧𝑖 

𝜃
                 (6.7) 

Now, if we replace, p0and p1  by their sample relative frequencies, i.e. by their sample estimates, 

the proportion of zeros and the proportion of ones in the sample, that is; p0 = n0/n and p1 =

n1/n, respectively, then (6.4) and (6.7) reduce respectively to; 

1 − 𝛼 − 𝛽 =  
𝑛𝑐

𝑛𝜃2
                                                                  (6.8) 

and 

−2𝑛𝜃 1 − 𝛼 − 𝛽 =
𝑛𝑐

1 − 𝜃
−

 𝑐𝑖
𝑛
𝑖=1 𝑧𝑖 

𝜃
                                         (6.9) 

Hence, (6.9) with the using of (6.8) becomes;  

−2
𝑛𝑐

𝜃
=

𝑛𝑐

1 − 𝜃
−

 𝑐𝑖
𝑛
𝑖=1 𝑧𝑖 

𝜃
 

From which we get that, 

𝜃 =
 𝑐𝑖

𝑛
𝑖=1 𝑧𝑖  − 2𝑛𝑐

 𝑐𝑖
𝑛
𝑖=1 𝑧𝑖 − 𝑛𝑐

                                                          (6.10) 

Similarly, using (6.5), (6.6) and (6.8), the estimates of α and βare given by; 

𝛼 =
𝑛0

𝑛
−

𝑛𝑐

𝑛
 

1 − 𝜃 

𝜃 2
                                                          (6.11) 

and, 

𝛽 =
𝑛1

𝑛
−

𝑛𝑐

𝑛
 

1 − 𝜃 

𝜃 
                                                          (6.12) 

Hence, the maximum likelihood estimates (MLE) of the parameters 𝜃, 𝛼 and 𝛽 are given by 

(6.10), (6.11) and (6.12), respectively. 

 

7.Empirical Examples 

In this Section, three different sets of data will be used to estimate empirically the parameters of 

the ZOIGD as well as fitting its frequencies. 

 

7.1 Migrants in Household Cohort Data 

Table (1) shows the number of migrants in household cohort (including International migrants) 

of the Rural Areas of Comilla district of Bangladesh, that has used by Pandey and Tiwari [1]to  
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estimate the ML and the MLE estimates of the parameters of their proposed model (PTM) 

consisting of a mixture of a displaced geometric distribution and a logarithmic distribution 

model, in order to estimate the frequencies of migrants per household including the international 

migrants, as well as the ZOIG model estimates.  

 

Table (1) The ML and the MLE estimates of the PTM* and the ZOIGDfor the number of 

migrants in household cohort (including International migrants) of the Rural Areas of 

Comilla district of Bangladesh. 

No. of 

Migrants per 

Household 

Observed 

Frequencies  

Expected Frequencies 

ME MLE 

PTM ZOIGD PTM ZOIGD 

0 1941 1941 1942 1941 1941 

1 544 544 551 544 544 

2 117 112 100 112 108 

3 50 49 51 49 53 

4 18 25 26 25 26 

5+ 26 25 26 25 23 

Total 2696 2696 2696 2696 2696 

Model 

Parameters 

θ --- 0.515695 --- 0.532895 

 --- 0.70486 --- 0718917 

 --- 0.0545025 --- 0.0705393 

𝜒2 1.052057 2.870848 1.052057 0.5504899 

df 5 5 5 5 

p-value 0.958258 0.719889 0.958258 0.990158 

 

The p-values forχ2goodness of fitting a ZOIGD model fitting and Pandey and Tiwari [1]model’s 

fitting, as shown in Table (1), indicate that the ZOIGD model give accurate fitting as Pandey and 

Tiwari [1]model does.  
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7.2Consumer Credit Behavior Data  

Table (2) shows the MLE of the parameters of Saengthong et al [21]ZINB and ZINB-CR models 

as well as of the ZOIGD model, to estimate the frequencies of number of major derogatory 

reports in the credit history of individual credit card applicants, from which we can see the 

accuracy of the ZOIGD model. 

 

Table (2) The MLE estimates of the ZINB, ZINB-CR and the ZOIGDfor the number of 

major derogatory reports in the credit history of individual credit card applicants. 

No. of Major 

Derogatory 

Reports 

Observed 

Frequencies  

Expected Frequencies 

MLE 

ZINB ZINB-CR ZOIGD 

0 1060 1060 1062 1060 

1 137 94 135 137 

2 50 73 55 47 

3 24 45 27 29 

4 17 25 15 18 

5 11 12 9 11 

6+ 20 10 16 17 

Total 1319 1319 1321 1319 

Model 

Parameters 

θ --- --- 0.615089 

 --- --- 0.709537 

 --- --- 0.045985 

𝜒2 49.36012 2.532386 1.638526 

df 6 6 6 

p-value 0.00000 0.864825 0.949767 

 

7.3Heavy Vehicle Traffic Accident Data  

Sharma and Landge[3]used zero inflated negative binomial regression as their model to estimate 

the accident frequencies for the heavy vehicle traffic accident data collected for the year 2010, as 

given in their Table 5. Using the ZOIG model to estimate the accident frequencies, as given in  
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Table (3), shows accurate estimates for the given accident data using the MLE. 

 

Table (3) The parameters estimates of the ZINB RegressionofSharma and Landge 

(2013)and the ZOIGfor Heavy Vehicle Traffic Accident Data. 

No. of 

Accident 

Observed 

Frequencies  

Expected Frequencies 

ZINB Regression 

Model  

MLE 

ZOIG 

0 55 64 55 

1 26 17 26 

2 4 11 6 

3 3 7 4 

4 3 4 2 

5 1 2 1 

6 3 1 1 

7+ 1 1 1 

Total 96 107 96 

Model 

Parameters 

θ --- 0.615383 

 --- 0.414225 

 --- 0.173177 

𝜒2 17.52059 2.75 

df 7 7 

p-value 0.014333 0.6093 

 

8. Conclusions 

We considered estimation of the parameters of the zero-one inflated geometric distributions by 

the method of moment estimators and maximum likelihood estimators. The method of maximum 

likelihood estimators was shown to have butter estimates on three different real data sets, 

namely, the number of migrants in household cohort, consumer credit behavior data, and a heavy 

vehicle traffic accident data. The zero-one inflated geometric distribution is shown also to have a 

better fitting for that frequencies of the real data sets than the zero inflated geometric 

distribution. 
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