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ABSTRACT 

Tetranacci sequence is defined as 𝑇0 = 𝑇1 = 𝑇2 = 0, 𝑇3 = 1 and the recurrence relation 

𝑇𝑛 = 𝑇𝑛−1 + 𝑇𝑛−2 + 𝑇𝑛−3 + 𝑇𝑛−4  ;  𝑛 ≥ 4. Here we consider the sequence of whole family of 

generalized tetranacci numbers defined by recurrence relation 𝑇𝑛 + 𝑇𝑛+𝑎 + 𝑇𝑛+𝑏 + 𝑇𝑛+𝑐 =

𝑇𝑛+𝑑 ; where 1 ≤ 𝑎 < 𝑏 < 𝑐 < 𝑑 are integers. Here we obtain the generalized golden 

proportions for the whole family of generalized tetranacci numbers. In fact we prove 

that
𝑙𝑖𝑚

𝑛 → ∞

𝑇𝑛+𝑎+𝑡

𝑇𝑛+𝑎
= 𝜔𝑡 ; where 𝑡 is odd and 𝜔 is some real number between 1 and 2. 

KEYWORDS: TETRANACCI SEQUENCE, FIBONACCI SEQUENCE, GOLDEN PROPORTION, 

TRIBONACCI SEQUENCE. 

1. Introduction: 

It is a well-known fact that the ratio of consecutive Fibonacci numbers converges to a 

fixed ratio 𝜙 =
1+ 5

2
= 1.61803, the golden proportion which is the positive root of the equation 

x2 − x − 1 = 0. Stakhov [1] defined the p - Fibonacci numbers, Fp(n), by the recurrence relation  

                    Fp n =  
1;

Fp n − 1 + Fp n − p − 1 ;
  1 ≤ n ≤ p + 1

n > p + 1
 , where p = 1,2,3,… . 

It can be seen clearly that for p = 1, we get the usual Fibonacci sequence 

F n = F n − 1 + F(n − 2); where F 1 = F 2 = 1. 

The values of Fp(n) for p = 1,2,3,4,5,6 and for first 15 values of n are shown in table 1. 

http://aarf.asia/irjmeit.php
http://www.aarf.asia/
mailto:editor@aarf.asia
mailto:editoraarf@gmail.com


 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

International Research Journal of Mathematics, Engineering and IT (IRJMEIT) 

91 | P a g e  

 

Table 1: Values of 𝐅𝐩(𝐧) 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

F1(n) 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 

F2(n) 1 1 1 2 3 4 6 9 13 19 28 41 60 88 129 

F3(n) 1 1 1 1 2 3 4 5 7 10 14 19 26 36 50 

F4(n) 1 1 1 1 1 2 3 4 5 6 8 11 15 20 26 

F5(n) 1 1 2 1 1 1 2 3 4 5 6 7 9 12 16 

F6(n) 1 1 1 1 1 1 1 2 3 4 5 6 7 8 10 

Stakhov [1] also proved that Fp n  satisfies 

       
lim

n → ∞

Fp (n)

Fp (n−1)
= φp ,                                                               (1)  

where the golden p – proportion φp  is the root of xp+1 = xp + 1. 

De Villiers [2] made the similar observations and gave the partial proof of (1) in the case 

when 𝑝 is odd, with the suggestions for the case when 𝑝 is even. Later, Falcon [3] generalized 

the same problem and gave the complete proof of the same. 

Also, Shah, Mehta [4] considered the similar problem for the sequence of tribonacci 

numbers defined by the recurrence relation Tn + Tn+1 + Tn+2 = Tn+3  ; where n ≥ 1. They 

defined sequence of generalized Tribonacci numbers by the recursive relation                         

Tn + Tn+p + Tn+q = Tn+r ,where 1 ≤ p < q < r are integers. In fact, they proved that 

lim
n → ∞

Tn +p +k

Tn +p
= Mk                                                           (2) 

except when k is odd and p, q, r are any positive integers. 

Lot of research has been done ([5], [6], [7], [8]) and still being pursued on the sequence 

of tribonacci numbers. The first 10 values of Tn  for different values of p, q and r, where          

1 ≤ p < q < r are given below.  

 

Table 2: The first 10 values of  𝐓𝐧 for different values of 𝐩, 𝐪 𝐚𝐧𝐝 𝐫 

p q r T1 T2 T3 T4 T5 T6 T7 T8 T9 T10  

1 2 3 0 1 1 2 4 7 13 24 44 81 

1 2 4 0 1 1 2 2 4 5 8 11 17 

1 2 5 0 1 1 2 4 2 4 7 8 10 

1 3 4 0 1 1 2 3 5 8 13 21 34 

1 3 5 0 1 1 2 4 3 6 9 12 16 

2 3 4 0 1 1 2 3 6 10 18 31 55 

2 3 5 0 1 1 2 4 3 7 8 12 19 

3 4 5 0 1 1 2 4 6 11 18 31 53 
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In this paper we continue this process of generalization and define a generalized recursive 

formula for the sequence of Tetranacci numbers and obtain the generalized golden proportions 

for the same. 

 

2. Preliminaries:  

The sequence of tetranacci numbers is defined by the recurrence relation                             

Tn = Tn−1 + Tn−2 + Tn−3 + Tn−4 ; where n ≥ 4 and T0 = T1 = T2 = 0, T3 = 1.                      (3)                 

It is seen that the ratio of consecutive terms of tetranacci sequence converges to fixed real 

number. In fact, we have 

                                                          
lim

n → ∞
Tn +1

Tn
= 1.92756                                                       (4) 

             We now define the sequence of generalized Tetranacci numbers by the recurrence 

relation  

                                               Tn + Tn+a + Tn+b + Tn+c = Tn+d                                                  (5) 

 

where 1 ≤ a < b < c < d are integers.                    

This recurrence relation gives the whole family of tetranacci sequence. Below in the table 

we give few tetranacci sequences for some values of a, b, c and d. 

 

Table 3: Tetranacci numbers for some values of 𝐚, 𝐛, 𝐜 and 𝐝 

a b c d T1 T2 T3 T4 T5 T6 T7 T8 T9 T10  

1 2 3 4 0 0 1 1 2 4 8 15 29 56 

1 3 5 6 0 0 1 1 2 4 5 8 14 22 

1 2 4 5 0 0 1 1 2 3 5 9 15 25 

1 2 4 6 0 0 1 1 2 4 3 6 7 13 

1 3 5 7 0 0 1 1 2 4 5 8 14 22 

2 3 4 6 0 0 1 1 2 4 8 7 15 20 

2 4 6 8 0 0 1 1 2 4 8 15 11 20 

2 4 5 7 0 0 1 1 2 4 8 7 13 18 

2 3 5 6 0 0 1 1 2 4 6 9 16 27 

3 5 6 7 0 0 1 1 2 4 8 13 23 41 

3 5 6 8 0 0 1 1 2 4 8 15 13 25 

2 3 6 7 0 0 1 1 2 4 8 10 13 20 

3 4 5 7 0 0 1 1 2 4 8 7 14 20 
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2 3 5 7 0 0 1 1 2 4 8 6 11 13 

2 4 5 6 0 0 1 1 2 4 7 12 22 39 

2 4 6 7 0 0 1 1 2 4 8 11 16 27 

 

Clearly for a = 1, b = 2, c = 3 and d = 4, we get the sequence of classical tetranacci 

numbers. We first assume that b = a + x, c = a + y and d = a + z, for some positive integers 

x, y & z. This clearly gives x < y < z. Thus result (5) can be written as  

Tn + Tn+a + Tn+a+x + Tn+a+y = Tn+a+z  . 

Replacing n by n + a + z, we get  

Tn = Tn−a−z + Tn−z + Tn+x−z + Tn+y−z . 

For the above difference equation, the corresponding characteristic equation can be given as 


n = 

n−a−z + 
n−z + 

n+x−z + 
n+y−z , which on simplification becomes 

                                                   
a+z = 

a+y + 
a+x + 

a + 1.                                                   (6)                                                     

We now write equation (6) as 
a =

1


z−

y−
x−1

 with x < y < z. 

Thus solving (6) is equivalent to solving the system 

F  =
1


z−

y−
x−1

 and G  = 
a
.                                     (7) 

We find the intersection of the curves defined in (7) for different values of x, y and z. 

 

3. Analysis of roots: 

We now consider different cases when a, x, y and z are even or odd. 

 When 𝑎 is even, the curve G  = 
a
 is symmetric about y - axis. Also, it can be 

observed that when z is even, system (7) has two real roots, say ω,ω′  such that 1 < ω < 2 and      

−2 < ω′ < 0 and when z is odd, system (7) has only one real root ω, where 1 < ω < 2. 

Also if 𝑎 is odd, the curve G  = 
a
 is symmetric about origin. Also, it is been observed 

that when 𝑧 is odd, system (7) has two real roots ω,ω′  such that 1 < ω < 2 and −2 < ω′ < 0. 

Moreover, when 𝑧 is even and when x and y are either even or odd, then system (7) have only 

one real root 𝜔 such that 1 < ω < 2. And when x, y and z are even, then system (7) has three 

real roots ω,ω′  and ω′′ , such that 1 < ω < 2 and −2 < ω′ , ω′′ < 0. 

Following are the graphs of system (7) for all possible permutations of a, x, y and z as even and 

odd. 
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Figure 1: a, x, y, z are even 

 
Figure 2: a, x, z are even and y is odd 
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Figure 3: a, z are even and x, y are odd 

 
Figure 4: a, y, z are even and x is odd 

 
Figure 5: a, y are even and x, z are odd   

Figure 6: a, x, y are even and z is odd 
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Figure 7:a, x are even and y, z are odd 

 
Figure 8: a is even and x, y, z are odd  

 
Figure 9: a is odd and x, y, z are even 

 
Figure 10: a, x, y are odd and z is even 
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Figure 11: a, y are odd and x, z are even 

 
Figure 12: a, x, y, z are odd 

 

 
Figure 13: a, x, z are odd and y is even  

Figure 14: a, y, z are odd and x is even 
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Figure 15: a, z are odd and x, y are even 

 
Figure 16: a is odd and x, y, z are even 

 

From the above figures, following conclusions can be made for the real roots of system (7): 

(1) One positive real root ω, such that 1 < ω < 2, where 𝑎 is even and 𝑧 is odd and x and y 

are either even or odd. 

(2) One positive real root ω, such that 1 < ω < 2, where 𝑎 is odd, 𝑧 is even and either of x 

and y is even or odd otherwise both are odd. 

(3) Two real roots ω and ω′  such that 1 < ω < 2 and −2 < ω′ < 0, where 𝑎 and z are odd 

and x and y are even or odd. 

(4) Two real roots ω and ω′  such that 1 < ω < 2 and −2 < ω′ < 0, where 𝑎 and z are even 

and x and y are even or odd. 

(5) Three real roots ω,ω′ , ω′′  such that 1 < ω < 2 and −2 < ω′ , ω′′ < 0, where 𝑎 is odd 

and x, y, z are even. 

It should be noted that for the real roots ω,ω′ and ω′′of system (7) if they exist, then we 

always have  ω >  ω′  and  ω >  ω′′  where 1 < ω < 2 and −2 < ω′, ω′′ < 0. 

We summarize the above given information in the below table:  
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Table: 4 

a x y z 
No. of Real 

Roots 
Real Roots 

Even Even Even Even 2  = ±ω; 1 < ω < 2 

Even Even Even Odd 1  = ω; 1 < ω < 2 

Even Even Odd Even 2  = ω,ω′ ; 1 < ω < 2, −2 < ω′ < 0 

Even Even Odd Odd 1  = ω; 1 < ω < 2 

Even Odd Even Even 2  = ω,ω′ ; 1 < ω < 2,−2 < ω′ < 0 

Even Odd Even Odd 1  = ω; 1 < ω < 2 

Even Odd Odd Even 2  = ω,ω′ ; 1 < ω < 2, −2 < ω′ < 0 
Even Odd Odd Odd 1  = ω; 1 < ω < 2 

Odd Even Even Even 3  = ω,ω′ , ω′′ , 1 < ω < 2,−2 < ω′ , ω′′

< 0 Odd Even Even Odd 2  = ω,ω′ ; 1 < ω < 2,−2 < ω′ < 0 

Odd Even Odd Even 1  = ω; 1 < ω < 2 

Odd Even Odd Odd 2  = ω,ω′ ; 1 < ω < 2,−2 < ω′ < 0 

Odd Odd Even Even 1  = ω; 1 < ω < 2 

Odd Odd Even Odd 2  = ω,ω′ ; 1 < ω < 2,−2 < ω′ < 0 
Odd Odd Odd Even 1  = ω; 1 < ω < 2 

Odd Odd Odd Odd 2  = ω,ω′ ; 1 < ω < 2,−2 < ω′ < 0 

  

 It can be clearly observed that (6) as equivalently (7) has (a + z) roots. The roots of (7) 

other than mentioned above are simple complex numbers whose modulus value is always less 

than 𝜔. We express these complex roots in exponential form as Zj = rje
iθj ; where                   

rj =  aj
2 + bj

2
, where θj = tan−1  

b j

aj
 . Also rj < 1 for all 𝑗. 

4. Few important results: 

Here we prove some intermediate results which together will lead to the main result of 

this paper. Throughout we consider 𝑡 as a fixed positive integer, x, y and zare some positive 

integers such that x < y < z and 1 < ω < 2, −2 < ω′,ω′′ < 0, where ω,ω′  and ω′′  are the real 

roots of system (9). We note that  ω >  ω′  and  ω >  ω′′ . 

Lemma 1: When all a, x, y and z are even then  

lim
n → ∞

Tn+a+t

Tn+a
= ωt ; 

if 𝑡 is even and this limit does not exist if 𝑡 is odd. 

Proof: Here a, x, y and z are even. Then it can be seen that the characteristic equation (6) has two 

real roots ±ω; where 1 < ω < 2.Thus, by the theory of equations [9], we write the solution of 

(6) as Tn = c1ω
n + c2(−ω)n +  cjZj

na+z
j=3 ; where cj ′s are constants. 
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Then, 
lim

n → ∞

Tn +a +t

Tn +a
=

lim
n → ∞

Tn

Tn−t
=

lim
n → ∞

c1ω
n +c2(−ω)n + c jZj

na +z
j =3

c1ω
n−t +c2(−ω)n−t + c j Zj

n−ta +z
j =3

 

=  
lim

n → ∞

c1 + c2(−1)n +  cj  
Zj

ω
 

n
a+z
j=3

c1  
1
ω
 

t

+ c2(−1)n−t  
1
ω
 

t

+  cj  
Zj

ω
 

n−t

 
1
ωt 

a+z
j=3

 

=  
lim

n → ∞

c1 + c2(−1)n +  cj  
rj

ω
 

n

e
j

inθja+z
j=3

1
ωt  c1 + (−1)n−tc2 +  cj  

rj

ω
 

n−t

 
1
ωt ei(n−t)θja+z

j=3

 

Now since rj < 1and 1 < ω < 2, as n → ∞,  
r j

ω
 

n

→ 0 and  
r j

ω
 

n−t

→ 0.  Therefore, we get  

lim
n → ∞

Tn +a+t

Tn +a
=

c1+(−1)n c2
1

ωt  c1+(−1)n−t c2 
. 

Now when 𝑡 is even, 
lim

n → ∞

Tn +a+t

Tn +a
=

lim
n → ∞

c1+(−1)n c2
1

ωt  c1+(−1)n c2 
= ωt . 

Also, when 𝑘 is odd,  
lim

n → ∞

Tn +a+t

Tn +a
= ωt lim

n → ∞
c1+(−1)n c2

 c1−(−1)n c2 
. 

Clearly, the limit does not exist when 𝑡 is odd.This proves the required result. 

Lemma 2: When (i) a and z are odd or (ii) a and z are even, and both of x, y are even or odd 

together, we have 
lim

n → ∞

Tn +a+t

Tn +a
= ωt ; t = 1, 2, 3, … . 

Proof: Here, in both the cases equation (6) has two real roots and the remaining (a + z − 2) 

roots are complex numbers. Hence, if ω and ω′ are two real roots of equation (8) then by the 

theory of equations [9], the solution of (6) is given as Tn = c1ω
n + c2(ω′)n +  cj Zj

na+z
j=3 ;           

where cj ′s are arbitrary constants. 

Since  ω′  <  ω  and rj < 1 < ω, we have as n → ∞, 
ω′

ω
 

n

→ 0 and  
r j

ω
 

n

→ 0 and thus           

proceeding as above Lemma 1, we get our required result. 

Lemma 3: When (i) 𝑎 is even and 𝑧 is odd or (ii) 𝑎 is odd and 𝑧 is even, and both of x, y are 

even or odd together, we have
lim

n → ∞

Tn +a+t

Tn +a
= ωt ; t = 1, 2, 3, …. 

Proof: Here, since we have a + z odd, equation (6) has one real roots and remaining                 

(a + z − 1) roots are complex numbers. Assuming the real root of (6) as 𝜔, we can write by the 

theory of equations [9], the solution of (6) as Tn = c1ω
n +  cjZj

na+k
j=2 ; where cj ′s are arbitrary 

constants. Proceeding as above, the result follows. 
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Lemma 4: When 𝑎 is odd and x, y and z are even, then 
lim

n → ∞

Tn +a +t

Tn +a
= ωt ; t = 1, 2, 3,…    . 

Proof: Here, in this case the total number of roots of (6) is (a + z) of which three are real roots 

and remaining (a + z − 3) are complex numbers. Suppose the three real roots are ω, ω′ and ω′′, 

where 1 < ω < 2 and −2 < ω′,ω′′ < 0. Therefore, by theory of equations [9], we can write 

Tn = c1ω
n + c2(ω′)n + c3 ω

′′ n +  cj Zj
na+z

j=4  where cj ′s are arbitrary constants. Proceeding as 

earlier, we get our required result. 

5. Main result: 

The following main result easily follows by taking into consideration all the earlier 

results: 

Theorem 5: If a, x, y, z are any positive integers where x < y < z, then for the sequence of 

generalized tetranacci numbers, it is always true that 
lim

n → ∞
Tn +a+t

Tn +a
= ωt ; unless 𝑡 is odd. 
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