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ABSTRACT
Tetranacci sequence is defined asT, = T; =T, = 0,T; = 1 and the recurrence relation
T,=Ty,-1+ T, +T,_3+T,_4; n=4. Here we consider the sequence of whole family of
generalized tetranacci numbers defined by recurrence relation T, + Ty 1q + Thap + Tae =
T,.q; Where 1<a<b<c<d are integers. Here we obtain the generalized golden
proportions for the whole family of generalized tetranacci numbers. In fact we prove

lim Taiase
n — 0 Thta

that = w!; where t is odd and w is some real number between 1 and 2.

KEYWORDS: TETRANACCI SEQUENCE, FIBONACCI SEQUENCE, GOLDEN PROPORTION,
TRIBONACCI SEQUENCE.

1. Introduction:
It is a well-known fact that the ratio of consecutive Fibonacci numbers converges to a

fixed ratio ¢ = # = 1.61803, the golden proportion which is the positive root of the equation

x? —x — 1 = 0. Stakhov [1] defined the p - Fibonacci numbers, F,(n), by the recurrence relation

1 1<n<p+1
It can be seen clearly that for p = 1, we get the usual Fibonacci sequence
F(n) = F(n — 1) + F(n — 2); where F(1) = F(2) = 1.

The values of F,,(n) for p = 1,2,3,4,5,6 and for first 15 values of n are shown in table 1.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

International Research Journal of Mathematics, Engineering and I'T (IRJMEIT)

90| Page



http://aarf.asia/irjmeit.php
http://www.aarf.asia/
mailto:editor@aarf.asia
mailto:editoraarf@gmail.com

Table 1: Values of F,(n)

n 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
Fi(n) | 1 1 2 3 5 8 | 13 | 21 | 34 | 55 | 89 | 144 | 233 | 377 | 610
FFm)| 1|1 |12 |3 |4 |6 |9 |13|19|28 |41 |60 | 88 |129
Fm) | 111123457 [10]14]19]26]36]50
Fys(n) | 1 1 1 1 1 2 3 4 5 6 8 11 | 15 | 20 | 26
FEm)|1 | 1211123456 |79 ]12]16
Fm)|1 |11 ]1 11123456 7] 8]10

Stakhov [1] also proved that F, (n) satisfies
lim Fy(n)
n- Oon?n—l) = Pp> (l)

where the golden p — proportion ¢, is the root of xPHtl = xP +1.

De Villiers [2] made the similar observations and gave the partial proof of (1) in the case
when p is odd, with the suggestions for the case when p is even. Later, Falcon [3] generalized
the same problem and gave the complete proof of the same.

Also, Shah, Mehta [4] considered the similar problem for the sequence of tribonacci
numbers defined by the recurrence relation T, + T,,.1 + T,42 = T,43; Where n > 1. They
defined sequence of generalized Tribonacci numbers by the recursive relation

To + Tasp + Taiq = TarWhere 1 < p < q <r are integers. In fact, they proved that

lim Totp+k
nrp — Mk (:Z)
n— oo ln+p

except when k is odd and p, g, r are any positive integers.
Lot of research has been done ([5],[6],[7],[8]) and still being pursued on the sequence
of tribonacci numbers. The first 10 values of T, for different values of p,qandr, where

1 < p < q <rare given below.

Table 2: The first 10 values of T, for different values of p,qand r

p q r Ty T, T3 Ty Ts Te T; Ts Ty T
1 2 3 0 1 1 2 4 7 13 24 44 81
1 2 4 0 1 1 2 2 4 5 8 11 17
1 2 5 0 1 1 2 4 2 4 7 8 10
1 3 4 0 1 1 2 3 5 8 13 21 34
1 3 5 0 1 1 2 4 3 6 9 12 16
2 3 4 0 1 1 2 3 6 10 18 31 55
2 3 5 0 1 1 2 4 3 7 8 12 19
3 4 5 0 1 1 2 4 6 11 18 31 53
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In this paper we continue this process of generalization and define a generalized recursive
formula for the sequence of Tetranacci numbers and obtain the generalized golden proportions
for the same.

2. Preliminaries:

The sequence of tetranacci numbers is defined by the recurrence relation
Ty,=T, 4+ T+ T3+ T,_s;Wheren>4andTy=T; =T, =0, T3 = 1. (3)
It is seen that the ratio of consecutive terms of tetranacci sequence converges to fixed real

number. In fact, we have

lim Thes _ g 92756 (4)

n—> oo Ty
We now define the sequence of generalized Tetranacci numbers by the recurrence
relation

Tn + Tn+a + Tn+b + Tn+c = Inh4d (5)
where 1 < a < b < ¢ < d are integers.
This recurrence relation gives the whole family of tetranacci sequence. Below in the table

we give few tetranacci sequences for some values of a, b, c and d.

Table 3: Tetranacci numbers for some values of a,b,c and d

a b ¢ d|] T, T, T T, T T, T, Tg To T
1 2 3 4] 0 o 1 1 2 4 8 15 29 56
1 3 5 6| 0 o 1 1 2 4 5 8 14 22
1 2 4 51| 0 o 1 1 2 3 5 9 15 25
1 2 4 6] 0 o 1 1 2 4 3 6 7 13
1 3 5 7] 0 o 1 1 2 4 5 8 14 22
2 3 4 6| 0 o 1 1 2 4 8 7 15 20
2 4 6 8] 0 o 1 1 2 4 8 15 11 20
2 4 5 7] 0 o 1 1 2 4 8 7 13 18
2 3 5 6| 0 o 1 1 2 4 6 16 27
3 5 6 7] 0 o 1 1 2 4 8 13 23 M4
3 5 6 8] 0 o 1 1 2 4 8 15 13 25
2 3 6 7] 0 o 1 1 2 4 8 10 13 20
3 4 5 7] 0 o 1 1 2 4 8 7 14 20
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3 5 7 0 0 1 1 2 4 8 6 11 13
4 5 6 0 0 1 1 2 4 7 12 22 39
4 6 7 0 0 1 1 2 4 8 11 16 27

Clearly for a=1,b =2,c =3 and d = 4, we get the sequence of classical tetranacci
numbers. We first assume that b=a+x, c=a+y and d = a + z, for some positive integers
X,y & z. This clearly gives x < y < z. Thus result (5) can be written as

To + Thta + Tovatx T Tataty = Tovass -
Replacing n by n + a + z, we get
Th = Theaz T Taz + Thgxz + Togy—
For the above difference equation, the corresponding characteristic equation can be given as
AN = AR AT 4 AT 4 YT which on simplification becomes
AT =0T T % 1 (6)
1

We now write equation (6) as A* = o pWithx<y<z

Thus solving (6) is equivalent to solving the system

! - and G(A) = A2, (7)

P =5

We find the intersection of the curves defined in (7) for different values of x,y and z.

3. Analysis of roots:

We now consider different cases when a, X,y and z are even or odd.

When a is even, the curve G(A) =A% is symmetric about y - axis. Also, it can be
observed that when z is even, system (7) has two real roots, say w,w such that 1 < w < 2 and
—2 < w < 0and when z is odd, system (7) has only one real root w, where 1 < w < 2.

Also if a is odd, the curve G(L) = A is symmetric about origin. Also, it is been observed
that when z is odd, system (7) has two real roots w, w suchthat 1 <w < 2 and =2 < < 0.
Moreover, when z is even and when x and y are either even or odd, then system (7) have only
one real root w such that 1 < w < 2. And when x,y and z are even, then system (7) has three
real roots w,w and ", suchthatl1 < w < 2and -2 < w,w < 0.

Following are the graphs of system (7) for all possible permutations of a,x,y and z as even and
odd.
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Figure 1: a, X, y,  are even Figure 2: a, x, zare even and y is odd
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Figure 3: a, z are even and X, y are odd
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Figure 4: a, y, z are even and x is odd
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Figure 5: a, y are even and x, z are odd
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Figure 6: a, X, y are even and z is odd
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Figure 7:a, x are even and v, z are odd Figure 8: a is even and X, y, z are odd
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Figure 9: ais odd and x, y, z are even Figure 10: a, X, y are odd and z is even
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Figure 11: Figure 12: a, X, Y, z are odd

+10

Figure 13:a, x, zare odd and y is even Figure 14: a, y, z are odd and x is even
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Figure 15: a, z are odd and x, y are even

Figure 16: a is odd and x, y, z are even

From the above figures, following conclusions can be made for the real roots of system (7):

(1) One positive real root w, such that 1 < w < 2, where a is even and z is odd and x and y

are either even or odd.

(2) One positive real root w, such that 1 < w < 2, where a is odd, z is even and either of x

and y is even or odd otherwise both are odd.

(3) Two real roots w and w suchthat 1 < w <2 and =2 < w < 0, where a and z are odd

and x and y are even or odd.

(4) Two real roots w and w suchthat 1 < w < 2and —2 < w < 0, where a and z are even

and x and y are even or odd.

(5) Three real roots w,w,w suchthat 1 <w <2 and —2 < w,w < 0, where a is odd

and x,y, z are even.

It should be noted that for the real roots o, ® and w"of system (7) if they exist, then we

always have |w| > |o| and |w| > |o"| where 1 < ® < 2and -2 < 0, w" < 0.

We summarize the above given information in the below table:
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Table: 4

a X y v/ Nohggtzeal Real Roots
Even | Even | Even | Even 2 A=t l<w<?2
Even | Even | Even | Odd 1 Ar=wl<w<?2
Even | Even | Odd | Even 2 r=ww;l<w<?2 -2<w <0
Even | Even | Odd Odd 1 A=l <w<?2
Even| Odd | Even | Even 2 Ar=ww;l<w<2-2<w <0
Even | Odd Even | Odd 1 r=wl<w<?2
Even| Odd | Odd | Even 2 Lr=ww;l<w<2, —-2<mw <0
Even | Odd Odd Odd 1 A=w;l<w<?2
Odd | Even | Even | Even 3 Lr=ww,0, 1<n<2-2<0,0
Odd | Even | Even | Odd 2 A=, l<w<2-2<w <0
Odd | Even | Odd Even 1 A=l <w<?2
Odd | Even | Odd Odd 2 A=, l<w<2-2<w <0
Odd | Odd Even | Even 1 r=wl<w<?2
Odd | Odd | Even | Odd 2 r=ww;l<w<2,-2<w <0
Odd | Odd Odd | Even 1 A=w;l<w<?2
Odd | Odd | Odd | Odd 2 A=w0;l<w<2,-2<w <0

It can be clearly observed that (6) as equivalently (7) has (a + z) roots. The roots of (7)
other than mentioned above are simple complex numbers whose modulus value is always less

than . We express these complex roots in exponential form as Z =r]-eiei; where

I = /ajz + bjz, where 6; = tan™* Cﬁ) Also 1; < 1 for all j.
)

4. Few important results:

Here we prove some intermediate results which together will lead to the main result of
this paper. Throughout we consider t as a fixed positive integer, x,y and zare some positive
integers suchthat x <y <zand 1< w< 2, —2< 0,0 < 0, where w,w and w" are the real
roots of system (9). We note that |o| > |o'| and |o| > |o’.

Lemma 1: When all a, %,y and z are even then

lim Thtatt
®

n— o T, ’

if t is even and this limit does not exist if t is odd.
Proof: Here a,x,y and z are even. Then it can be seen that the characteristic equation (6) has two
real roots +; where 1 < w < 2.Thus, by the theory of equations [9], we write the solution of

— + .
(6) as T, = cro” + ¢, (—0)" + Y27 ¢Z" ; where ¢;'s are constants.
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lim T lim T lim  cio"+ea(-0)"+55 ¢z
Then, ntatt _ n __
n

-0 Tata N —>00Tat N — o0cio" trep(-0)" H+31 ¢ Z,“ ‘

n

_ lim

Z
¢+ (D" + a+3z Cj ( )
n—t

@) recom @) vma (@) @)

n

I in0;
_lim ¢ + (=D + Xt g ( ) e '
T now I\t .
Tt Come v g (D) (&) e
() ()
. r\ rn—t
Now since r; < 1and 1 < w < 2,asn — oo, (gl) — 0 and (;‘) — 0. Therefore, we get
lim Thyate — c1+(=D"c,
n— o Thta ${61+(—1)"_tC2}'
Now when ¢ is even, im Toteye _ lim B L SR
n— o Thta n - OOJ{CH‘(—UHCZ}
Also, when k is odd, lim Tatare _ e lim et
n — o Thia n — oo {c1—(=1)"cz}

Clearly, the limit does not exist when t is odd.This proves the required result.
Lemma 2: When (i) a and z are odd or (ii) a and z are even, and both of x, y are even or odd

lim Tojase
— 0 Thn+a

together, we have N =o4t=1,23,...

Proof: Here, in both the cases equation (6) has two real roots and the remaining (a 4z — 2)
roots are complex numbers. Hence, if o and o are two real roots of equation (8) then by the
theory of equations [9], the solution of (6) is given as T, = c;@" + ¢y (@)" +Za+z GZj,;

where ¢;'s are arbitrary constants.

’ "\ A
Since |w | < |w| and r; < 1 < w, we have as n - oo(%) - 0 and (;—‘) — 0 and thus

proceeding as above Lemma 1, we get our required result.
Lemma 3: When (i) a is even and z is odd or (ii) a is odd and z is even, and both of x,y are

hm Tn+a+t —
— 0 Th+a

even or odd together, we haven o5t=1,2,3, ..

Proof: Here, since we have a+z odd, equation (6) has one real roots and remaining

(a+z—1) roots are complex numbers. Assuming the real root of (6) as w, we can write by the

theory of equations [9], the solution of (6) as T, = c;o™ + Zja: GZ'; where ¢'s are arbitrary

constants. Proceeding as above, the result follows.
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Lemma 4: When a is odd and x, y and z are even, then lim Tutase _ oht=1,2,3,..
n — o Th+a

Proof: Here, in this case the total number of roots of (6) is (a + z) of which three are real roots
and remaining (a + z — 3) are complex numbers. Suppose the three real roots are ®, » and ®’,
where 1< w<2 and —2 < o,» < 0. Therefore, by theory of equations [9], we can write
T, = 0" + 2 (0)" + c3(@)" + X247 Z where ¢'s are arbitrary constants. Proceeding as
earlier, we get our required result.

5. Main result:
The following main result easily follows by taking into consideration all the earlier
results:

Theorem 5: If a, %, y, z are any positive integers where x <y < z, then for the sequence of

lim  Thiase

= w' ; unless t is odd.
— 00 Th+a

generalized tetranacci numbers, it is always true that n
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