

GOLDEN PROPORTIONS FOR THE GENERALIZED TETRANACCI NUMBERS

Gautam S. Hathiwala¹, Devbhadra V. Shah²

¹Lecturer, Department of Applied Science, C.K. Pithawala College of Engineering and Technology, India ²Associate Professor, Department of Mathematics, Sir P.T. Sarvajanik College of Science, India

ABSTRACT

Tetranacci sequence is defined as $T_0 = T_1 = T_2 = 0, T_3 = 1$ and the recurrence relation $T_n = T_{n-1} + T_{n-2} + T_{n-3} + T_{n-4}$; $n \ge 4$. Here we consider the sequence of whole family of generalized tetranacci numbers defined by recurrence relation $T_n + T_{n+a} + T_{n+b} + T_{n+c} = T_{n+d}$; where $1 \le a < b < c < d$ are integers. Here we obtain the generalized golden proportions for the whole family of generalized tetranacci numbers. In fact we prove that $\lim_{n \to \infty} \frac{T_{n+a+t}}{T_{n+a}} = \omega^t$; where t is odd and ω is some real number between 1 and 2.

KEYWORDS: TETRANACCI SEQUENCE, FIBONACCI SEQUENCE, GOLDEN PROPORTION, TRIBONACCI SEQUENCE.

1. Introduction:

It is a well-known fact that the ratio of consecutive Fibonacci numbers converges to a fixed ratio $\phi = \frac{1+\sqrt{5}}{2} = 1.61803$, the golden proportion which is the positive root of the equation $x^2 - x - 1 = 0$. Stakhov [1] defined the p - Fibonacci numbers, $F_p(n)$, by the recurrence relation

$$F_{p}(n) = \begin{cases} 1; & 1 \le n \le p+1 \\ F_{p}(n-1) + F_{p}(n-p-1); & n > p+1 \end{cases}, \text{ where } p = 1,2,3, \dots.$$

It can be seen clearly that for p = 1, we get the usual Fibonacci sequence

$$F(n) = F(n-1) + F(n-2)$$
; where $F(1) = F(2) = 1$.

The values of $F_p(n)$ for p = 1,2,3,4,5,6 and for first 15 values of *n* are shown in table 1.

Table 1: Values of $F_p(n)$

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$F_1(n)$	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610
$F_2(n)$	1	1	1	2	3	4	6	9	13	19	28	41	60	88	129
$F_3(n)$	1	1	1	1	2	3	4	5	7	10	14	19	26	36	50
$F_4(n)$	1	1	1	1	1	2	3	4	5	6	8	11	15	20	26
$F_5(n)$	1	1	2	1	1	1	2	3	4	5	6	7	9	12	16
$F_6(n)$	1	1	1	1	1	1	1	2	3	4	5	6	7	8	10

Stakhov [1] also proved that $F_p(n)$ satisfies

$$\lim_{n \to \infty} \frac{F_p(n)}{F_p(n-1)} = \varphi_p, \tag{1}$$

where the golden p – proportion ϕ_p is the root of $x^{p+1} = x^p + 1$.

De Villiers [2] made the similar observations and gave the partial proof of (1) in the case when p is odd, with the suggestions for the case when p is even. Later, Falcon [3] generalized the same problem and gave the complete proof of the same.

Also, Shah, Mehta [4] considered the similar problem for the sequence of tribonacci numbers defined by the recurrence relation $T_n + T_{n+1} + T_{n+2} = T_{n+3}$; where $n \ge 1$. They defined sequence of generalized Tribonacci numbers by the recursive relation $T_n + T_{n+p} + T_{n+q} = T_{n+r}$, where $1 \le p < q < r$ are integers. In fact, they proved that

$$\lim_{n \to \infty} \frac{T_{n+p+k}}{T_{n+p}} = M^k$$
(2)

except when k is odd and p, q, r are any positive integers.

Lot of research has been done ([5], [6], [7], [8]) and still being pursued on the sequence of tribonacci numbers. The first 10 values of T_n for different values of p,q and r, where $1 \le p < q < r$ are given below.

р	q	r	T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	T ₇	T ₈	T9	T ₁₀
1	2	3	0	1	1	2	4	7	13	24	44	81
1	2	4	0	1	1	2	2	4	5	8	11	17
1	2	5	0	1	1	2	4	2	4	7	8	10
1	3	4	0	1	1	2	3	5	8	13	21	34
1	3	5	0	1	1	2	4	3	6	9	12	16
2	3	4	0	1	1	2	3	6	10	18	31	55
2	3	5	0	1	1	2	4	3	7	8	12	19
3	4	5	0	1	1	2	4	6	11	18	31	53

Table 2: The first 10 values of T_n for different values of p, q and r

In this paper we continue this process of generalization and define a generalized recursive formula for the sequence of Tetranacci numbers and obtain the generalized golden proportions for the same.

2. Preliminaries:

The sequence of tetranacci numbers is defined by the recurrence relation $T_n = T_{n-1} + T_{n-2} + T_{n-3} + T_{n-4}$; where $n \ge 4$ and $T_0 = T_1 = T_2 = 0$, $T_3 = 1$. (3) It is seen that the ratio of consecutive terms of tetranacci sequence converges to fixed real number. In fact, we have

$$\lim_{n \to \infty} \frac{T_{n+1}}{T_n} = 1.92756 \tag{4}$$

We now define the sequence of *generalized Tetranacci numbers* by the recurrence relation

$$T_n + T_{n+a} + T_{n+b} + T_{n+c} = T_{n+d}$$
 (5)

where $1 \le a < b < c < d$ are integers.

This recurrence relation gives the whole family of tetranacci sequence. Below in the table we give few tetranacci sequences for some values of a, b, c and d.

a	b	с	d	T ₁	T ₂	T ₃	T_4	T_5	T ₆	T ₇	T ₈	T9	T ₁₀
1	2	3	4	0	0	1	1	2	4	8	15	29	56
1	3	5	6	0	0	1	1	2	4	5	8	14	22
1	2	4	5	0	0	1	1	2	3	5	9	15	25
1	2	4	6	0	0	1	1	2	4	3	6	7	13
1	3	5	7	0	0	1	1	2	4	5	8	14	22
2	3	4	6	0	0	1	1	2	4	8	7	15	20
2	4	6	8	0	0	1	1	2	4	8	15	11	20
2	4	5	7	0	0	1	1	2	4	8	7	13	18
2	3	5	6	0	0	1	1	2	4	6	9	16	27
3	5	6	7	0	0	1	1	2	4	8	13	23	41
3	5	6	8	0	0	1	1	2	4	8	15	13	25
2	3	6	7	0	0	1	1	2	4	8	10	13	20
3	4	5	7	0	0	1	1	2	4	8	7	14	20
I													

Table 3: Tetranacci numbers for some values of a, b, c and d

2	3	5	7	0	0	1	1	2	4	8	6	11	13
2	4	5	6	0	0	1	1	2	4	7	12	22	39
2	4	6	7	0	0	1	1	2	4	8	11	16	27

Clearly for a = 1, b = 2, c = 3 and d = 4, we get the sequence of classical tetranacci numbers. We first assume that b = a + x, c = a + y and d = a + z, for some positive integers x, y & z. This clearly gives x < y < z. Thus result (5) can be written as

$$T_n + T_{n+a} + T_{n+a+x} + T_{n+a+y} = T_{n+a+z}$$
.

Replacing n by n + a + z, we get

$$\Gamma_n = T_{n-a-z} + T_{n-z} + T_{n+x-z} + T_{n+y-z}.$$

For the above difference equation, the corresponding characteristic equation can be given as $\lambda^n = \lambda^{n-a-z} + \lambda^{n-z} + \lambda^{n+x-z} + \lambda^{n+y-z}$, which on simplification becomes

$$\lambda^{a+z} = \lambda^{a+y} + \lambda^{a+x} + \lambda^a + 1.$$
(6)

We now write equation (6) as $\lambda^a = \frac{1}{\lambda^z - \lambda^y - \lambda^x - 1}$ with x < y < z.

Thus solving (6) is equivalent to solving the system

$$F(\lambda) = \frac{1}{\lambda^{z} - \lambda^{y} - \lambda^{x} - 1} \text{ and } G(\lambda) = \lambda^{a}.$$
 (7)

We find the intersection of the curves defined in (7) for different values of x, y and z.

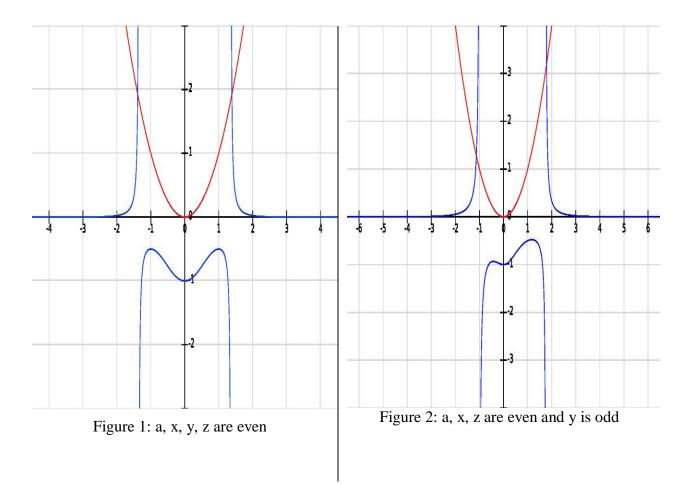
3. Analysis of roots:

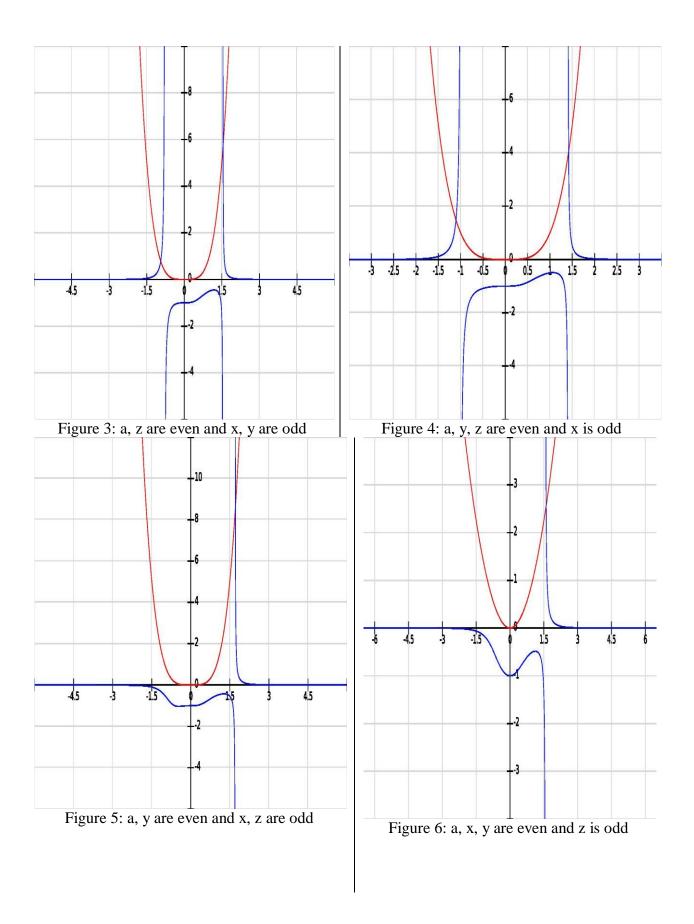
We now consider different cases when a, x, y and z are even or odd.

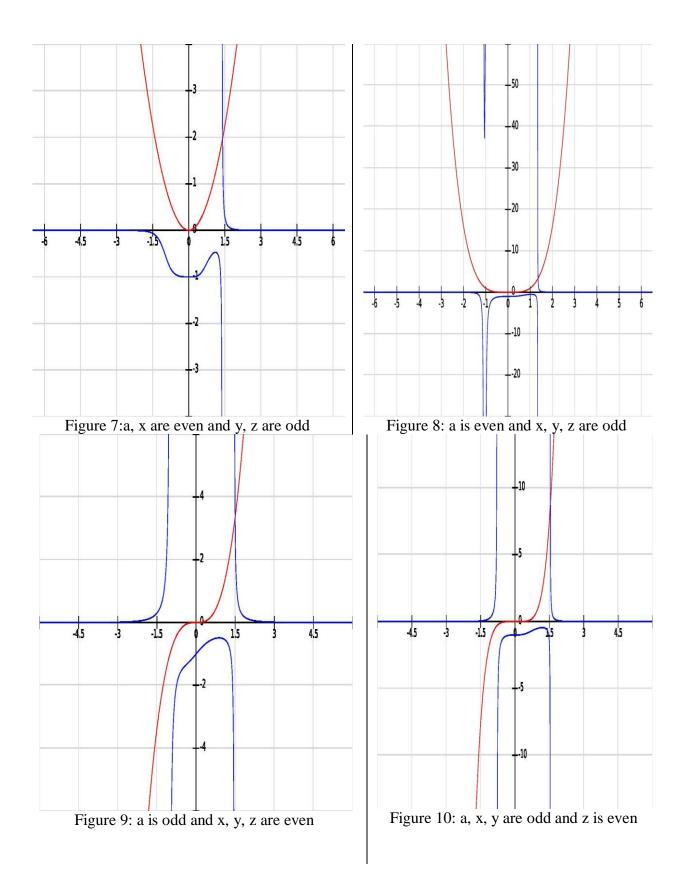
When *a* is even, the curve $G(\lambda) = \lambda^a$ is symmetric about y - axis. Also, it can be observed that when z is even, system (7) has two real roots, say ω , ω' such that $1 < \omega < 2$ and $-2 < \omega' < 0$ and when z is odd, system (7) has only one real root ω , where $1 < \omega < 2$.

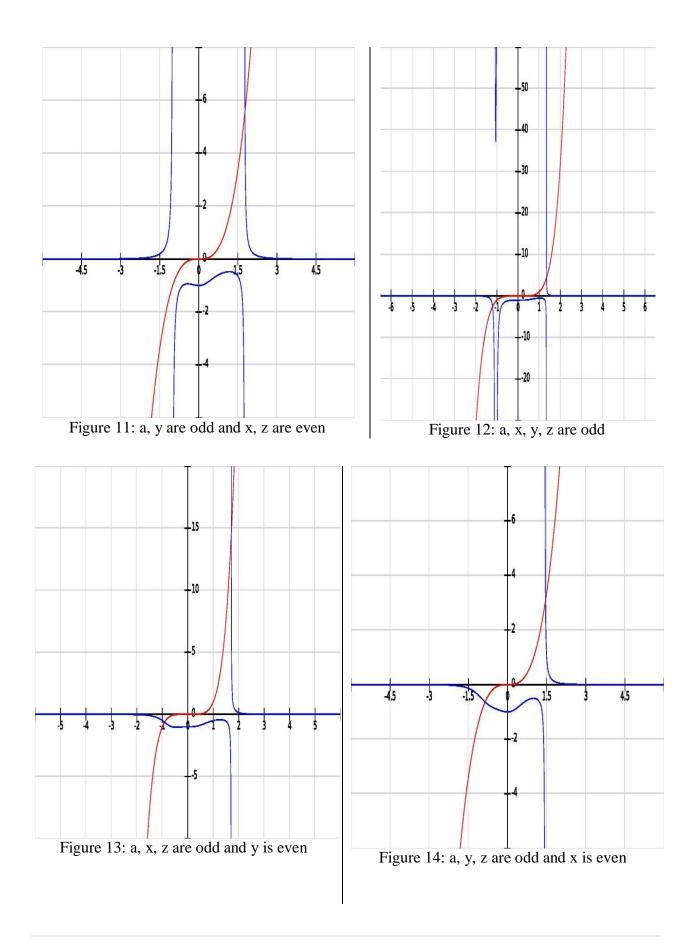
Also if *a* is odd, the curve $G(\lambda) = \lambda^a$ is symmetric about origin. Also, it is been observed that when *z* is odd, system (7) has two real roots ω, ω' such that $1 < \omega < 2$ and $-2 < \omega' < 0$. Moreover, when *z* is even and when x and y are either even or odd, then system (7) have only one real root ω such that $1 < \omega < 2$. And when x, y and z are even, then system (7) has three real roots ω, ω' and ω'' , such that $1 < \omega < 2$ and $-2 < \omega', \omega'' < 0$.

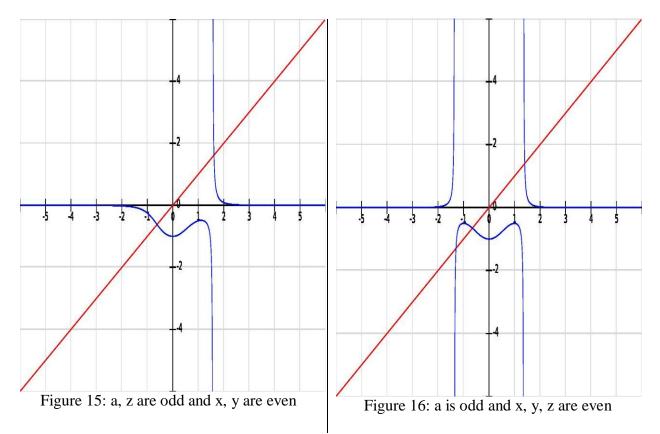
Following are the graphs of system (7) for all possible permutations of a, x, y and z as even and odd.











From the above figures, following conclusions can be made for the real roots of system (7):

- (1) One positive real root ω , such that $1 < \omega < 2$, where *a* is even and *z* is odd and x and y are either even or odd.
- (2) One positive real root ω , such that $1 < \omega < 2$, where *a* is odd, *z* is even and either of x and y is even or odd otherwise both are odd.
- (3) Two real roots ω and ω' such that $1 < \omega < 2$ and $-2 < \omega' < 0$, where *a* and *z* are odd and *x* and *y* are even or odd.
- (4) Two real roots ω and ω' such that $1 < \omega < 2$ and $-2 < \omega' < 0$, where *a* and z are even and x and y are even or odd.
- (5) Three real roots $\omega, \omega', \omega''$ such that $1 < \omega < 2$ and $-2 < \omega', \omega'' < 0$, where *a* is odd and x, y, z are even.

It should be noted that for the real roots ω, ω' and ω'' of system (7) if they exist, then we always have $|\omega| > |\omega'|$ and $|\omega| > |\omega''|$ where $1 < \omega < 2$ and $-2 < \omega', \omega'' < 0$.

We summarize the above given information in the below table:

а	Х	у	Z	No. of Real Roots	Real Roots
Even	Even	Even	Even	2	$\lambda = \pm \omega; 1 < \omega < 2$
Even	Even	Even	Odd	1	$\lambda = \omega; 1 < \omega < 2$
Even	Even	Odd	Even	2	$\lambda = \omega, \omega'; 1 < \omega < 2, \qquad -2 < \omega' < 0$
Even	Even	Odd	Odd	1	$\lambda = \omega; 1 < \omega < 2$
Even	Odd	Even	Even	2	$\lambda = \omega, \omega'; 1 < \omega < 2, -2 < \omega' < 0$
Even	Odd	Even	Odd	1	$\lambda = \omega; 1 < \omega < 2$
Even	Odd	Odd	Even	2	$\lambda = \omega, \omega'; 1 < \omega < 2, \qquad -2 < \omega' < 0$
Even	Odd	Odd	Odd	1	$\lambda = \omega; 1 < \omega < 2$
Odd	Even	Even	Even	3	$\lambda = \omega, \omega', \omega'', \qquad 1 < \omega < 2, -2 < \omega', \omega''$
Odd	Even	Even	Odd	2	$\lambda = \omega, \omega'; 1 < \omega < 2, -2 < \omega' < 0$
Odd	Even	Odd	Even	1	$\lambda = \omega; 1 < \omega < 2$
Odd	Even	Odd	Odd	2	$\lambda = \omega, \omega'; 1 < \omega < 2, -2 < \omega' < 0$
Odd	Odd	Even	Even	1	$\lambda = \omega; 1 < \omega < 2$
Odd	Odd	Even	Odd	2	$\lambda = \omega, \omega'; 1 < \omega < 2, -2 < \omega' < 0$
Odd	Odd	Odd	Even	1	$\lambda = \omega; 1 < \omega < 2$
Odd	Odd	Odd	Odd	2	$\lambda = \omega, \omega^{'}; 1 < \omega < 2, -2 < \omega^{'} < 0$

Table: 4

It can be clearly observed that (6) as equivalently (7) has (a + z) roots. The roots of (7) other than mentioned above are simple complex numbers whose modulus value is always less than ω . We express these complex roots in exponential form as $Z_j = r_j e^{i\theta_j}$; where $r_j = \sqrt{a_j^2 + b_j^2}$, where $\theta_j = \tan^{-1} \left(\frac{b_j}{a_j}\right)$. Also $r_j < 1$ for all *j*.

4. Few important results:

Here we prove some intermediate results which together will lead to the main result of this paper. Throughout we consider *t* as a fixed positive integer, x, y and zare some positive integers such that x < y < z and $1 < \omega < 2$, $-2 < \omega', \omega'' < 0$, where ω, ω' and ω'' are the real roots of system (9). We note that $|\omega| > |\omega'|$ and $|\omega| > |\omega''|$.

Lemma 1: When all a, x, y and z are even then

$$\lim_{n\to\infty}\frac{T_{n+a+t}}{T_{n+a}}=\omega^t;$$

if t is even and this limit does not exist if t is odd.

Proof: Here a, x, y and z are even. Then it can be seen that the characteristic equation (6) has two real roots $\pm \omega$; where $1 < \omega < 2$. Thus, by the theory of equations [9], we write the solution of (6) as $T_n = c_1 \omega^n + c_2 (-\omega)^n + \sum_{j=3}^{a+z} c_j Z_j^n$; where c_j 's are constants.

$$\begin{split} \text{Then,} & \lim_{n \to \infty} \frac{T_{n+a+t}}{T_{n+a}} = \lim_{n \to \infty} \frac{T_n}{T_{n-t}} = \lim_{n \to \infty} \frac{c_1 \omega^n + c_2 (-\omega)^n + \sum_{j=3}^{a+z} c_j Z_j^n}{c_1 \omega^{n-t} + c_2 (-\omega)^{n-t} + \sum_{j=3}^{a+z} c_j \left(\frac{Z_j}{\omega}\right)^n} \\ & = \lim_{n \to \infty} \frac{c_1 + c_2 (-1)^n + \sum_{j=3}^{a+z} c_j \left(\frac{Z_j}{\omega}\right)^n}{c_1 \left(\frac{1}{\omega}\right)^t + c_2 (-1)^{n-t} \left(\frac{1}{\omega}\right)^t + \sum_{j=3}^{a+z} c_j \left(\frac{Z_j}{\omega}\right)^{n-t} \left(\frac{1}{\omega^t}\right)} \\ & = \lim_{n \to \infty} \frac{c_1 + c_2 (-1)^n + \sum_{j=3}^{a+z} c_j \left(\frac{\Gamma_j}{\omega}\right)^n e_j^{in\theta_j}}{\frac{1}{\omega^t} \{c_1 + (-1)^{n-t} c_2\} + \sum_{j=3}^{a+z} c_j \left(\frac{\Gamma_j}{\omega}\right)^{n-t} \left(\frac{1}{\omega^t}\right) e^{i(n-t)\theta_j}} \end{split}$$
Now since $r_j < 1$ and $1 < \omega < 2$, as $n \to \infty, \left(\frac{r_j}{\omega}\right)^n \to 0$ and $\left(\frac{r_j}{\omega}\right)^{n-t} \to 0$. Therefore, we get $\lim_{n \to \infty} \frac{T_{n+a+t}}{T_{n+a}} = \frac{c_1 + (-1)^n c_2}{\frac{1}{\tau_t} \{c_1 + (-1)^{n-t} c_2\}}.$

Now when t is even, $\lim_{n \to \infty} \frac{T_{n+a+t}}{T_{n+a}} = \lim_{n \to \infty} \frac{c_1 + (-1)^n c_2}{\frac{1}{\omega^t} \{c_1 + (-1)^n c_2\}} = \omega^t.$

Also, when k is odd, $\lim_{n \to \infty} \frac{T_{n+a+t}}{T_{n+a}} = \omega_n^t \lim_{n \to \infty} \frac{c_1 + (-1)^n c_2}{(c_1 - (-1)^n c_2)}.$

Clearly, the limit does not exist when t is odd. This proves the required result.

Lemma 2: When (i) a and z are odd or (ii) a and z are even, and both of x, y are even or odd together, we have $\lim_{n \to \infty} \frac{T_{n+a+t}}{T_{n+a}} = \omega^t$; t = 1, 2, 3, ...

Proof: Here, in both the cases equation (6) has two real roots and the remaining (a + z - 2) roots are complex numbers. Hence, if ω and ω' are two real roots of equation (8) then by the theory of equations [9], the solution of (6) is given as $T_n = c_1 \omega^n + c_2 (\omega')^n + \sum_{j=3}^{a+z} c_j Z_j^n$; where c_j 's are arbitrary constants.

Since $|\omega'| < |\omega|$ and $r_j < 1 < \omega$, we have as $n \to \infty, \left(\frac{\omega}{\omega}\right)^n \to 0$ and $\left(\frac{r_j}{\omega}\right)^n \to 0$ and thus proceeding as above Lemma 1, we get our required result.

Lemma 3: When (i) *a* is even and *z* is odd or (ii) *a* is odd and *z* is even, and both of x, y are even or odd together, we have $\lim_{n \to \infty} \frac{T_{n+a+t}}{T_{n+a}} = \omega^t$; t = 1, 2, 3, ...

Proof: Here, since we have a + z odd, equation (6) has one real roots and remaining (a + z - 1) roots are complex numbers. Assuming the real root of (6) as ω , we can write by the theory of equations [9], the solution of (6) as $T_n = c_1 \omega^n + \sum_{j=2}^{a+k} c_j Z_j^n$; where c_j 's are arbitrary constants. Proceeding as above, the result follows.

Lemma 4: When *a* is odd and x, y and z are even, then $\lim_{n \to \infty} \frac{T_{n+a+t}}{T_{n+a}} = \omega^t; t = 1, 2, 3, \dots$

Proof: Here, in this case the total number of roots of (6) is (a + z) of which three are real roots and remaining (a + z - 3) are complex numbers. Suppose the three real roots are ω , ω' and ω'' , where $1 < \omega < 2$ and $-2 < \omega', \omega'' < 0$. Therefore, by theory of equations [9], we can write $T_n = c_1 \omega^n + c_2 (\omega')^n + c_3 (\omega'')^n + \sum_{j=4}^{a+z} c_j Z_j^n$ where c_j 's are arbitrary constants. Proceeding as earlier, we get our required result.

5. Main result:

The following main result easily follows by taking into consideration all the earlier results:

Theorem 5: If a, x, y, z are any positive integers where x < y < z, then for the sequence of

generalized tetranacci numbers, it is always true that $\frac{\lim_{n \to \infty} \frac{T_{n+a+t}}{T_{n+a}} = \omega^t$; unless t is odd.

References:

[1]Stakhov A., The golden section and modern harmony mathematics, *Application of Fibonacci numbers, Vol. 7*,

Kluwer Academic Pub., 1998, pp. 393-399.

[2]De Villiers, M., A Fibonacci generalization and its dual, Int. Jr. Math. Educ. Sci. Technol., 31 (2000), 464-473.

[3]Falcon S., A simple proof of an interesting Fibonacci generalization, Int. Jr. Math. Edu. Sci. Tech., 35, No. 2

(2004), 259-261.

[4] Shah D. V., Mehta D. A., Golden proportions for the generalized Tribonacci numbers, *Int. Jr. Math. Educ. Sci.*

Technol., 40(6) (2009), 837-842.

[5] McCarty C. P., A formula for Tribonacci numbers, Fibonacci Quart. 19 (5) (1981), 391.393.

[6] AlladiK., HoggattV.E., Jr., On Tribonacci numbers and related functions, *FibonacciQuart.15* (1) (1977), 42-45.

[7] Lin P. Y., De Moivre-type identities for the Tribonacci numbers, *Fibonacci Quart.26* (2) (1988), 131.134.

[8]Shah D. V., Special cases of Tribonacci periodicity, Jr. Ind. Acad. Math., Vol. 33, No. 2 (2011), 483 – 491.

[9] Elaydi S. N., An introduction to difference equations, Springer-Verlag, N. York, 2ndEdn, 1999.