
 

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

International Research Journal of Mathematics, Engineering and IT (IRJMEIT) 

75 | P a g e  

 

International Research Journal of  Mathematics, Engineering and IT 
Vol. 3, Issue 4,  April  2016           IF- 3.563                 ISSN: (2349-0322) 

© Associated   Asia   Research   Foundation   (AARF)  
Website: www.aarf.asia Email : editor@aarf.asia , editoraarf@gmail.com  

 

FLOW OF AN ELECTRICALLY CONDUCTING MICROPOLAR 

FLUID DOWN A VERTICAL CYLINDER 

 

Ajit Kumar, Preeti and K. R. Singh 

ABSTRACT 

The problem of flow of an electrically conducting micropolar fluid down a vertical cylinder 

has been discussed. The axial and micro-rotation velocities functions f and g respectively are 

expressed in to the power series of the perturbation parameter k (micropolar fluid parameter 

assumed small). The influences of the parameter k and k1 (magnetic parameter) on velocity 

functions f and g have been shown graphically. 
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1.   INTRODUCTION: 

           In last few years the theory of micropolar fluid developed by Eringen has 

attracted the researchers. A lot of work is being done in this field. Deswal, S. & 

K. K. Kalkal[1], Mahfouz, F.M. [2], Srinivasacharya, D. & M. Upendar [3],  Amirat, Y. & K. 

Hamdache [4] and Singh, K. R, Preeti&Ajit Kumar [5,6] are working in this field actively. 

Hayat and Sajid[7] have found the solution of thin film flow of fourth grade fluid down a 

vertical cylinder. Sajid, Ali and Hayat [8] have found on exact solutions for thin film flows of 

a micropolar fluid. The purpose of the present research work is to study the effects of 

concentration parameter  and magneto-hydrodynamic parameter on the axial velocity 

function f and the micro-rotation function g. 
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2. FORMULATION OF THE PROBLEM: 

In a three dimensional cylindrical set of co-ordinates the system consists of an 

infinitely long vertical cylinder of radius R. The incompressible electrically conducting fluid 

flows on the out side surface of this infinite cylinder. The flow is in the form of a thin, 

uniform axisymmetric film of thickness δ, in contact with stationary air. The velocity and the 

microrotation are of the form:    

        V=[0, 0, w(r)]   and   N=N(r) 

The continuity equation 
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is being satisfied identically. 

 

 

The momentum equation becomes , 
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The angular momentum equation becomes , 
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The boundary condition of the problem are :- 
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where R is the radius of the cylinder and    is the small thickness of the fluid layer. 

Introducing the dimensionless variable and function as 

32

1

2
, ( ) ( ),   ( ) ( ),

g Rr R R
f w r g N r m

R
  

  
    ,                       (5) 

Where  





  is the kinematic viscosity. 

Substituting the expressions (5) in equations (2) and (3) , we obtain 

0fKKm)gg(K)ff)(K1(
1

''"                        (6) 

0)fg2(K)ggg)(2/K1( '2'"2                                 (7) 

where  



k

K (micropolar fluid parameter), kRBK /22

01  (magnetic parameter), k is vortex 

viscosity,µ is dynamic viscosity and j is equal to R
2
. Primes indicate differentiation with 

respect to  . The vortex viscosity is assumed to be smaller than the dynamic viscosity. 

The transformed boundary conditions are : 

f(1)=0,  g(1)=-n f'(1) 

f(d)=f'(d)= g(d)= 0                                     (8) 

where .  1 









R
d


 

Since the exact solution of the governing equations (6) and (7) subject to the boundary 

conditions (8) is not possible. We use the perturbation technique taking K (≤0.3 i.e k≤0.3µ)as 

perturbation parameter assumed small.  

3.    SOLUTION OF THE PROBLEM : 

 The axial velocity function f and the microrotation g are expressed into the power 

series of the perturbation parameter K as: 

     










0n
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n

n gKgandfKf                            (9) 

 Substituting the expression (9) in equation (6) and (7) and assuming that the 

perturbation parameter K is small such that the terms containing K
3
 and higher powers of K 
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are neglected and then on comparing the terms independent of K and coefficients of K and 

K
2
from both sides, we get the following set of differential equations: 
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The transformed boundary conditions in terms of fo, f1, f2, f0', f1', f2', g0 and g1are : 

 f0(1)=f1(1)=f2(1)=0, 

 f0'(d)=f1'(d) =f2'(d)=0, 

 g0(d)=g(d)=g2(d)=0, 

 g0(1)=-nf0'(1), g1(1)=-nf1'(1) and g2(1) =-nf2'(1)                      (16) 

 The solutions of the differential equations (10) to (15) are determined subject to the 

boundary conditions (16) which are given as follows:

(17) 

 

 (18) 
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To find the constants C1 and C2 we use the boundary conditions (16) and assume : 
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Then on substituting  =d in equation (16) and dividing  both sides of the obtained equation 

by d ,we get : 
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On substituting  =1 in equation (6.23) and f2'(  ) and taking  
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Using the boundary condition g2(1)=-nf2'(1) we get  
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solving (27) and (29), we get 
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On substituting the values of C1 and C2 in equation (23) we get the microrotation function g2(

 )in terms of  (variable) , d and other parameters. 

4.     RESULTS AND DISCUSSION : 

 The variation of the axial velocity function f with ζ at K=0.1, m=1, d=2 and n=0.0 

(strong concentration of microelements) for different values of the magnetic parameter K1=1, 

2, 3 is represented through fig. (1). It is evident from this figure that the velocity function f 

decreases with an increase in the magnetic parameter K1 throughout the gap length (1<ξ<2). 

 The value of the function f is zero at the surface of the cylinder and is maximum at the 

upper surface of the thin film ξ=2. It is also clear from the fig. (3) that the behaviour the 

velocity function f with K1 at n=0.5 (indicate vanishing the anti symmetric part of the stress 

tensor and denotes weak concentration of the microelements) is similar to its behaviour in 

fig.(1). The only difference is that the magnitude of the velocity function f is smaller in case 

of n=0.5 than in case of n=0.0. 

 Fig.(2) exhibits the behaviour of the microrotation function g at K=0.1, m=1, d=2 and 

n=0.0 for different values of the magnetic parameter K1=1,2,3. It is clear from the graph that 

microrotation function remains unchanged approximately with increase in the magnetic 

parameter K1 in case of the strong concentration (n=0.0). All the values of g in the region 

1<ξ<2 are negative and g is minimum at ξ =1 whereas it is maximum (zero) at ξ=2.The 

microrotation function g start increasing very fast near the surface of the cylinder and after 

decreasing in the region 1.1<ξ<1.4. It starts increasing again upto to the upper surface of the 

film. All the branches in this figure are being overlapped. 
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 The behaviour of the microrotation function g with ξ at K=0.1, m=1, d=2 and n=0.5 

(weak concentration) for different values of K1=1,2,3 is shown in fig. (4). It is concluded 

from this figure that the microrotation function g increases with an increase in K1 throughout 

the entire radial region of the thin film. Microrotation function magnitude is maximum at the 

surface of the cylinder with zero microrotation at the upper surface of the film. The behaviour 

of the function g with gravitation parameter m shown in fig.(8) is reversed to its behaviour 

with K1 shown in fig.(4) for n=0.5.  

Figures (5) and (7) represents the variation of the dimensionless velocity function f with ξ at 

m=1,d=2, K1=2 in case of n=0.0 and n=0.5 respectively for different values of the parameter 

k=0.1,0.2,0.3. It is seen in these figures that the function f decreases with an increase in K 

throughout the entire radial flow region. The value of the axial velocity function is zero 

(minimum) at the surface of the cylinder whereas attaining maximum value near the upper 

surface of the film, it starts decreasing (situation does not arise in case of thin film as 1 ≤ξ<2 

slightly as ξ tends to 2. The influences of the parameters K on the microrotation function g at 

K1=2, m=1 d=2,n=0.0 for K=0.1, 0.2, 0.3 in cases of n=0.0 (strong concentration) are shown 

through figure (6). In this figure the microrotation function g decreases with an increase in K. 

It is also observed that the variation the microrotation function g with ξ is similar 

approximately in the two figures (2), (6)  through-out the entire radial region 1<ξ<2. 

Fig (8) shows the behaviour of the micro-rotation function g with ξ at n=0.5,m=1,d=2, K1=2 

for different values of  K =0.1,0.2,0.3. It is clear from this figure that the micro-rotation is 

minimum near the surface of the cylinder whereas maximum on the surface of the film .The 

micro-rotation function g increases with an increase in fluid parameter K throughout the 

entire radial region. 

 

Fig.(1): Influence of parameter K1 on the axial velocity function f for n=0.0 
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          Fig.(2): Influence of parameter K1 on the micro-rotation function g for n=0.0 

 

Fig.(3): Influence of parameter K1 on the axial velocity function f for n=0.5 

 

 

          Fig.(4): Influence of parameter K1 on the micro-rotation function g for n=0.5 
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Fig.(5): Influence of parameter K on the axial velocity function f for n=0.0 

 

           Fig.(6): Influence of parameter K on the micro-rotation function g for n=0.0 

 

Fig.(7): Influence of parameter K on the axial velocity function f for n=0.5 
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        Fig.(8): Influence of parameter K on the micro-rotation function g for n=0.5 

 

5. CONCLUSION : 

 It is concluded that the axial velocity is zero at the surface of the cylinder and 

maximum approximately at the upper surface of the film. The axial velocity is increasing 

very fast from the surface of the cylinder towards the upper surface of the thin film. It is also 

evident from the graphs of microrotation function g that the magnitude of the microrotation is 

maximum near the surface of the cylinder and vanishes at the upper surface of the thin film. 

The microrotation decreases in magnitude very fast near the surface of the cylinder and after 

increasing in magnitude, it start decreasing in slightly small forward region and start 

decreasing again in magnitude, in case of n=0.0, whereas in case of n=0.5. It decreases in 

magnitude linearly from the surface of the cylinder to the upper surface of the thin film.  
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