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ABSTRACT

In this paper, for any given topological space (X,3), we introduce and study a new topology 7.

whose members we call 2-open sets. We proved that 3, is not comparable to the given topology

3. However, we investigate the behavior of 2-open sets with respect to that of 3- open sets in X.
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1. Introduction:

Let (X,3) be a topological space. In 1982, Hdeib [6] introduced the notion of w-closeness. Using
this concept, he introduced and studied w-continuity. In 1966, the notions of 6-open subsets, 6-
closed subsets and 6-closure were introduced by Velic¢ko[15] for the purpose of studying an
important class of topological spaces, namely, H-closed spaces in terms of filter bases. He also
showed that the collection of 6-open sets in a topological space Xitself forms a topology teon X.
Dickman and Porter [4], [5], Joseph [8]extended the work of Velicko to study further properties
of H closed spaces. Noiri and Jafari[12], Caldas et al. [1] and [2], Steiner [13] and Cao et al [3]
have also obtained several new and interesting results related to these sets. We use these

concepts to define and develop a new class of open sets which we called Q-open sets.
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2. Preliminaries :

Let (X ,3) be a topological space. For a subset AcX, the closure and the interior of A is denoted
by cl(A) and int(A), respectively. First let us recall some definitions, for any subset A of X, A is
said to be

(i) a-open[11] if Acint(cl(int(A))),

(ii) preopen[10] if A cint(cl(A)),

(ii1) regular open [14] if A=int(cl(A)),

(iv) regular closed [14]) if A = cl(int(A))).

Definition 4.01 : A point x € X is said to be in the 6-closure [15] of a subset A of X, denoted by
0-cl(A), if cl(U) N A # ¢ for each open set U of X containing Xx.

Definition 4.02 : A point p is called a condensation point of A if every open set containing p
contains uncountably many points of A. A subset A of a space X is called a w-closed [6] if it
contains all of its condensation points. The complement of w-closed subset is called w-open.
Notations 4.01 : The family of all w-open (resp. 6-open, a-open) subsets of a space X is denoted
by w-O(X) (respectively, 1o= 6—0O(X), a— O(X)).

Definition 4.03 : A subset A of a space X is called w,-open[16] if for every x € A, there exists an
open subset B <X containing x such that (B ~ 8-int(A)) is countable. As usual the complement
of a we-open subset is called weo-closed.

3. A New Class of Open Sets:

In this section, we introduce and study a new class of open sets.

Definition 5.01 : Let (X ,3) be a topological space and let AcX be any subset of X. A point pe
X is called a clocondensation point of A if the closure of every open set containing p contains
uncountably many points of A.

Example 5.01 : Let R be the set of real numbers endowed with the topology 3={®, R, Q }where
Q’ is the set of irrational numbers. Let A be an uncountable subset of Q". Then each element of
R is a clocondensation point of A. However, if B is any subset of Q, the set of rational numbers
then B has no clocondensation point. In fact, if A is any uncountable subset of R, then each
element of R is a clocondensation point of A.

Example 5.02 :Let R be the set of real numbers equipped with usual topology. Then each point

of the interval (a,b) has only its own elements as clocondensation points. The set Q of rational
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numbers has no clocondensation point while the set Q" of irrational numbers has each element of
R as a clocondensation point.

Theorem 5.01 : Every uncountable subset of a second countable space (X ,3)has a
clocondensation point.

Proof : Let B={U, : n € N} be a countable base for the topology on X and let C be an
uncountable subset of X. Let C not have any clocondensation point. Then for every x € C there
exists an open set I, in X such that x € V, and cl(V,)N E is countable. Now for every V, there
exists some U, € such that x € U, cV,ccl(V,)= xeU, NEand U, N E is countable. Now
E = Ux cc(Uy N E). This shows that E is countable which yields a contradiction.

Theorem 5.02 : Every uncountable subset of a second countable space X has uncountably many

clocondensation points.

Proof : Let A be the collection of all condensation points of an uncountable subset E of a second
countable space X. If A is countable then E ~ A is uncountable and contains no clocondensation
point of itself which contradicts Theorem 5.01.

Corollary 5.01 : Let (X ,3) be a second countable topological space and let A be an uncountable
subset of X. Let B be the collection of all clocondensation points of A. Then E ~ A is countable.
Corollary 5.02 : Let(X ,3) be a second countable topological space and let A be a subset of X. If
A does not contain any clocondensation points, then A is countable.

Theorem 5.03 : Every uncountable subset of a Lindelof space (X ,3) has a clocondensation
point.

Proof : Let (X ,3) be a Lindelsf space and let C be an uncountable subset of X such that C does
not have any clocondensation point. Then for every x €X, there exists an open set V, in X
such that xe V, and cl(1;,)N C is countable. Then {V, : x€ X} is an open cover of X. Since X is
Lindelsf, it admits of a countable subcover ,say, {V, : n € N} then Cc(V,NC) cU,en
(cl(¥,) N C) which implies that E is countable, a contradiction.

Corollary 5.03 : Every uncountable subset of a compact space (X ,3) has a clocondensation
point.

Theorem 5.04 : The set of all clocondensation points of a subset of a topological space (X ,3) is
closed.

Proof : Let X be a topological space and let A be a subset of X. Let D be the collection of all
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clocondensation points of A. Let x € X ~ D. Then there exists an open set U in X such that xe
U and cl(U) N A is countable. We claim that U N D= @. Forify € U N D theny € U and ye D
which implies that y is a clocondensation point of A and therefore cl(U) N A is uncountable, a
contradiction.

Remark 5.01 : Let (X ,3) be a topological space and let A be a subset of X. Then every
condensation point of A is a clocondensation point of A.

Definition 5.02 :A subset A of a topological space (X ,3)is said to be a Q-closed [6] if it
contains all its clocondensation points. The complement of a Q-closed subset is called Q-open.
Example 5.03 : Let R be the set of real numbers equipped with the topology © ={@, R, Q }where
Q’ is the set of irrational numbers. Then the set A = Q"U{0} is Q —open since (Q"U{0})=Q ~
{0} is Q closed, for if xe Q" U{0} then the closure of any neighborhood of x cannot intersect Q
~ {0} in uncountably many points as Q ~ {0} is itself countable. In general any set of the type
Q UA where AcQ is Q —open in X, since any subset of Q is  —closed in X.

Theorem 5.05 : Let X be a topological space. Let Ac X then, A is Q — open if for every Xe A

there exists an open set U such that (cl(U)~A) is countable.

Proof : Let A be Q-open then X~A is Q- closed. Let XA then x & (X~ A). Since X~ A is Q —
closed, there exists an open subset U of X such that x € U and cl(U)N(X ~ A) is countable
which implies that (cl(U)~A) is countable.

Conversely, let for every Xe€ A there exist an open set U in X such that x € U
and(cl(U)~ A) is countable. Now if x¢ (X~ A), then x€ A and so there exists an open set U of
X such that x € U and (cl(U)~A) is countable, i.e., cl(U)N (X~ A) is countable. This shows that x
¢ Q—cl(X ~ A) implying that (X~ A) is Q-closed and hence A is Q-open.

Theorem 5.06 : Let(X ,3) be a topological space. Let Q—O(X) be the collection of  —open
sets. Then Q-O(X) forms a topology on X. We denote this topology by Jnand call the resulting
space as 3, -topological space.

Notation 5.01 : Let (X,3q) be the topological space corresponding to a topological space (X ,3)
and let A < X be any subset of X. Then

() Jo-closure of A is denoted by Q- cl(A) .

(i) Jo- interior of A is denoted by Q- int(A).
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Definition 5.03 : The Q-closure of A is the collection of all clocondensation points of A

alongwith the elements of A i.e. Q- cl(A) = AU {collection of all clocondensation points of A}.

Definition 5.04 : The Q-interior of A is the collection of all those points x of A for which there
exists an open neighborhood Uy such that (cl(U,) — A) is countable.

Theorem 5.07 : Let (X ,3) be a topological space. Let Q—C(X) be the collection of Q —closed
sets. Then it is obvious that Q—C(X) is closed under arbitrary intersections and finite unions.
Also @ and X are in Q ~ C(X).

Example 5.04 : Let (R,X) be the set of real numbers with usual topology. Let N be the set of
natural numbers equipped with the relativized topology Un. Obviously, (N,Ux) is a discrete
topological space. Let Ac N. Then, for every xeN and for all UEJ such that xe U, we
have cl(U) NA is countable . Since A itself is countable hence x ¢ Q- cl(A) implying that Ais
Q-closed. Hence each subset of N is Q-closed & therefore QQ—open which shows that the space
(N, Uy) is also discrete.

Example 5.05 : Let (R, ) be the set of real numbers with usual topology . Let (a,b) € U. Let
x€E(a,b) then, if U=(a,b) we have , xe U, U €Ul and cl(U) ~ (a,b)={a,b} which is countable.

Hence for this space every open set is 2-0pen.

Example 5.06 :Let ( Q,3) be the set of rational numbers endowed with the indiscrete
topology3. Let Ac Q. Let x¢ A. Then x has the only neighbourhood Q with cl(Q)=Q and
cl(Q) n A is countable which shows that A is Q-closed and hence each subset of Q is
Q-closed . Consequently A is Q—open . This shows that (Q ,3g)) is a discrete topology.
Definition 5.05 : The intersection of all Q-closed sets of X containing a subset Ac X is defined
as the J3q-closure of A.

Definition 5.06 : The union of all Q-open sets of X contained in Ac X is defined as theJq-
interior of A.

Lemma 5.02 : Let A be a subset of a space (X ,3). Then the following hold:

() Ais Sg—closed in X if and only if A= Jo—CI(A).

(i)  SJo—cl(X~A)=X~Tg-int (A)

(iii)  Jg—cl(A) is Ig—closed in X.

(iv)  XeJg-cl(A) ifand only if AN G #£@ V3q-open sets G containing A.
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Theorem 5.07: If a 3—open set U has countably many boundary elements then U is J3g-0pen
also.

Proof : Let U be a 3— open set with countably many boundary points. Then U will be 3, —open
if for every x€U there exists VES such that xeV and cl(V)~ V = countable. Take V=U then,
cl(U)~U is countable. Hence U is Jo-open.

Theorem 5.08 : If A is both 3—open and J—closed, then A is both Jo—0pen and Jo—closed.
Proof : Ais 3—closed = A =cl(A). Now A is Jq- open if for every X€A there exists UES
such that xeU and cl(U)~ A is countable. Let U=A (because A is 3—open also) = cl(A)~ A =0
which is obviously countable. Thus A is Jo—open. Now A is 3—closed and3—open= A is
Jo—open because A is open and closed = X ~ A is closed and open= X ~ A is also
Jo—open= A is Io—closed also.

Theorem 5.09 : Every countable set is J,-closed.

Proof : Let A be a countable set. Let x¢A and let U be an open set containing x then, AN clU is
countable which implies that X € Jq — cl(A)= A is Jq-closed.

Theorem 5.10 : A subset A is an Jg—o0pen set for a space (X, J) if and only if there exists a 3—
open set U and a countable set V such that for every x € A, we have x € U and (cl(U)~ V) cA.
Proof : Let XEA =there exists UEST such that xe U and cl(U) ~ A is countable. If we take
cl(U)~A=V then cl(U)~VcA.Conversely, let x € A. Then there exists a J—open subset U
containing x and a countable subset V such that cl(U)~VcA. But this shows that cl(U) ~ A is

countable implying the result.

Definition 5.07 : A space ( X,3) is said to be anti locally countable space if nonempty open sets
are uncountable.

Theorem 5.11 : If ( X,3) is a anti locally countable space then so is (X, Jgq).

Proof : Let A€ Jpand let x€ A. Then, there exists a 3— open subset UcX and a countable set
V containing x satisfying cl(U)~ VcA. Now UeJ implies that U is uncountable and so cl(U) ~
V is uncountable. Hence A is uncountable.

Theorem 5.12 : If X is an antilocally countable regular space and if A is a 3—open, then, cl(A)

c Jo- CI(A)
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Proof : Let xecl(A). We show that xeJq, - cl(A).Let B be an 3q—0pen set containing x. Then,
there exists U €3 and a countable set V with xeU and is such that (cl(U)~ V) c B =(cl(U) ~
V) NA € BN A= (cI(U)nA)~ Vc BNA. Now, x €U and U is an open set, therefore
xecl(A)= UNA #@. Further, since both U and A€J, we have that UNA is Uncountable. But
this implies thatcl(U) n A is uncountable = BNA is uncountable= BNA #@=X€Jq - cl(A)
Theorem 5.13 : If ( X, 3) is a regular space then, 3q - cl(A)ccl(A).
Proof : Suppose xeJq - cl(A), then for every UeJ with xeU we have thatcl(U) N A is
uncountable. Now let V be an open set containing x. Since X is regular, there exists an open set
Vi such that xeV;c cl(V;) c U. Now because xe3qo - cl(A)we have that cl(Vi)N A is
uncountable= U N A is uncountable. Hence, U N A#@=> x€cl(A).=JTq - cl(A)ccl(A).
Corollary5.04: If ( X, 3) is anti locally countable regular space then Jq - cl(A)= cl(A).
4. Relation of Q open sets with some other kind of open sets
RESULT 6.01 : The topologyt3J,,is finer than the topology t3.
RESULT 6.02 : The topology3Jis finer than the topology Js.
RESULT 6.03 : Ina regular topological space, the topologyJ,,is finer than the topology 3.
RESULT 6.04 : Ina regular topological space, the topologytgis finer than the topology 3.
5. The Q-continuity
DEFINITION 7.01 : A function f: X-Y is said to be 3o-continuous if Yx € X and V open sets
V in'Y containing f(x), 3 an 3g-open subset U in X such that x € U and f(U) cV.
THEOREM 7.01 : For a function f : X-Y, the following are equivalent :

(i) f is Jo-continuous.

(i)  fY(A) is Iq-open in X V open subsets A in Y.

(iii) fY(K) is Jq-closed in X vclosed subsets A in Y.
THEOREM 7.02 : Following are equivalent for a function f: (X,3) —(Y,0)

Q) fis Q - continuous.

(i) (X, Iq) —(Y, o) is continuous.
EXAMPLE 7.01 : Let R be the real line equipped with the topology 3 ={ @,R, Q"} where Q” is
the set of irrational numbers. Let Y = {a,b,c,d} and let o = (Y, @,{c}, {d},{a,c}, {c.d},{a,c,d}}

be a topology on Y. Define a function f: (R,3) =(Y,0) as:
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fx)= (a ifxeQ u {0}
b ifxegQ u{0}

then it can easily be seen that f is Jq — continuous.
EXAMPLE 7.02 : Consider (N,3p) where 3p denotes the discrete topology on set N of natural
numbers then QO(N) =3Jp and f: (N. Ig) — (N. 10) defined by f(x) = x ¥x€ N is continuous.
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