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ABSTRACT 

By extending the notion of pseudo-achromatic number in the context of (𝑘, 𝑑) coloring and 

introducing the concept of pseudo-d-achromatic number 𝜓𝑠
𝑑(𝐺) of a graph G. In this paper, I 

discuss further results on this new coloring in terms of partition graphs, the effect on the pseudo-

d-achromatic number of removing points or lines, the exact values for the cycles, complete m-

partite graphs and the bounds for the pseudo-d-achromatic numbers in terms of other parameters 

and the construction of 𝑘 -edge d-critical graphs. 

Keywords: Pseudo d- achromatic number, 𝑘 −pseudo complete d-colorable, partition graphs, 

𝑘 −edge d- critical graphs. 
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1.Introduction: 

 Let G be a simple graph. A coloring 𝜁: 𝑉 𝐺 → {1,2,3, … , 𝑘} is called pseudo complete if 

each pair of different colors appears in an edge. The pseudo achromatic number 𝜓𝑠
𝑑(𝐺) is the 

maximum 𝑘 for which there exists a pseudo complete coloring of G. If the coloring is required to 

be proper(that is, each chromatic class is independent) then such a maximum is known as the 

achromatic number of G denoted by ψ(G). The chromatic number 𝜒(𝐺) is the minimum number 
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of colors  required for the vertex coloring of G. A chromatic coloring that used 𝜒(𝐺)-colors is a 

complete coloring. Hence, 𝜒 𝐺 ≤ ψ G ≤ ψ
s
 G − [1]. 

                  Vince [6] introduced the concept of starchromatic number which is the natural 

generalization of chromatic number. Let 𝑘, 𝑑 be positive integers with 𝑘 ≥ 2𝑑. Let 𝑧𝑘 =

{1,2,3, … , 𝑘} is the set of integer modulo 𝑘  and 𝐷𝑘 𝑥, 𝑦 = min  𝑥 − 𝑦 , 𝑘 −  𝑥 − 𝑦  . A (𝑘, 𝑑)- 

coloring of a graph G is a mapping 𝐶: 𝑉 → 𝑧𝑘  such that 𝐷𝑘(𝐶 𝑢 , 𝐶 𝑣 ) ≥ 𝑑 for each edge 

𝑢𝑣 ∈ 𝐸. If  𝑉 𝐺  = 𝑛 and 𝐺 has a  𝑘, 𝑑 −coloring, then the star chromatic number 𝜒∗(𝐺) of a 

graph 𝐺 is defined by 𝜒∗ 𝐺 = min⁡{
𝑘

𝑑
/𝐺 has a  𝑘. 𝑑 −coloring and 2𝑑 ≤ 𝑘 ≤ 𝑛}. The concept 

of d-achromatic number 𝜓𝑑(𝐺) and pseudo d-achromatic number 𝜓𝑠
𝑑(𝐺) was introduced in [4] 

in the context of  𝑘, 𝑑 −coloring of 𝐺. A pseudo complete d-coloring of using 𝑘 colors is a 

mapping 𝜑: 𝑉(𝐺) → 𝑍𝑘  such that for any two elements 𝑖, 𝑗 ∈ 𝑍𝑘  with 𝐷𝑘(𝑖, 𝑗) ≥ 𝑑 there exists 

adjacent vertices 𝑢, 𝑣 such that 𝜑 𝑢 = 𝑖 and   𝜑 𝑣 = 𝑗. The pseudo achromatic number  𝜓𝑠
𝑑(𝐺) 

is the maximum value of 𝑘 for which there exists a pseudo complete d-coloring of 𝐺. A graph 

having a pseudo complete d-coloring using 𝑘 colors is called a 𝑘 − pseudo complete d-colorable 

graph. If the complete d-coloring required to be proper, then such a maximum is known as d-

achromatic number denoted by 𝜓𝑑(𝐺). Also we have 𝜒𝑑(𝐺) ≤ 𝜓𝑑(𝐺) ≤  𝜓𝑠
𝑑(𝐺) where 𝜒𝑑(𝐺) is 

the minimum number of colors required for proper complete d-coloring. In this paper, I found 

the exact values of this number 𝜓𝑠
𝑑(𝐺) for a variety of family of graphs and defined this pseudo 

d-chromatic number in terms of partition graphs and investigate further results about the effect 

of removing points and lines on this number and upper bounds for this pseudo d-chromatic 

number.  

The following results are proved in [4] 

Proposition 1.1[4]:Let 𝐺 be a 𝑘 −pseudo complete d-colorable graph. Then  𝑉(𝐺) ≥ 𝑘  
𝑘−2𝑑+1

∆
  

Corollary 1.2[4]:For any graph,with maximum degree ∆, 𝜓𝑠
𝑑(𝐺) ≤ max⁡{𝑘/𝑘  

𝑘−2𝑑+1

2
 ≤  𝑉(𝐺) } 

Remark 1.3[4]:Let 𝑘 and 𝑑 be positive integer with 𝑘 ≥ 2𝑑. Consider the graph 𝐺𝑘
𝑑 =

(𝑉, 𝐸)where 𝑉 = {1,2,3, … , 𝑘} and 𝐸 𝐺 = {(𝑖, 𝑗)/𝐷𝑘(𝑖, 𝑗) ≥ 𝑑}. Clearly 𝐺𝑘
𝑑  is (𝑘 − 2𝑑 + 1) 

regular and  𝐺𝑘
𝑑is 𝑘 −pseudo complete d-colorable graph and size of the graph is 

𝑘(𝑘−2𝑑+1)

2
. 
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Proposition 1.4[4]:Let 𝑘 and 𝑑 be positive integers with 𝑘 ≥ 2𝑑. Let 𝑛(𝑘, 𝑑) denote the integer 

𝑘(𝑘−2𝑑+1)

2
 or 

𝑘 𝑘−2𝑑+1 

2
+

𝑘

2
 according as 𝑘 is odd or even. Then the cycle on 𝑛(𝑘, 𝑑) vertices is 

𝑘 −pseudo complete d-colorable. 

Proposition 1.5[4]: Let 𝑘 and 𝑑 be positive integers with 𝑘 ≥ 2𝑑.  

Let 𝑛(𝑘, 𝑑)= 

𝑘(𝑘−2𝑑+1)

2
+ 1 𝑖𝑓 𝑘 𝑖𝑠 𝑜𝑑𝑑

𝑘 𝑘−2𝑑+1 

2
+

𝑘

2
 𝑖𝑓 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛

  

Then any path on 𝑛(𝑘, 𝑑) vertices is k-pseudo complete d-colorable. 

2. Main results: 

Theorem 1.1:Let 𝑛 and 𝑑 be positive integers with 𝑛 > 𝑑, then 𝜓𝑠
𝑑 𝐾𝑛,𝑛 = 𝑛 + 𝑑 where 𝐾𝑛,𝑛  is a 

complete bipartite graph. 

Proof: Let 𝑋 = {𝑥𝑖}𝑖=1
𝑛  and 𝑌 =  𝑦𝑖 𝑖=1

𝑛  be a bipartition of 𝐾𝑛,𝑛 . Consider  the function 

𝑓: 𝑉 𝐾𝑛,𝑛 → {1,2,3, . . , 𝑛, . . , 𝑛 + 𝑑} defined by 𝑓 𝑥𝑖 = 𝑖 and 𝑓 𝑦𝑖 = 𝑖 + 𝑑, 1 ≤ 𝑖 ≤ 𝑛 gives a 

 𝑛 + 𝑑 −pseudo complete d-coloring of 𝐺so that 𝜓𝑠
𝑑 𝐾𝑛,𝑛 ≥ 𝑛 + 𝑑                (1) 

By Corollary 1.2, we have 𝜓𝑠
𝑑 𝐾𝑛,𝑛 ≤ max⁡{𝑛 + 𝑑/  

𝑛−𝑑+1

𝑛
 (𝑛 + 𝑑) ≤ 𝑉(𝐾𝑛,𝑛)} so that 

 𝜓𝑠
𝑑 𝐾𝑛,𝑛 ≤ 𝑛 + 𝑑                (2) 

Hence by (1) and (2) 𝜓𝑠
𝑑 𝐾𝑛,𝑛 = 𝑛 + 𝑑. 

Remark 1.2:If a graph 𝐺 admits a 𝑘 −pseudo complete d-coloring then for any pair of colors 

𝑖, 𝑗 ∈ 𝑍𝑘 with 𝐷𝑘 𝑖, 𝑗 ≥ 𝑑, there exists atleast one edge whose end vertices receive the colors 𝑖 

and 𝑗. Hence  𝐸(𝐺) ≥
𝑘(𝑘−2𝑑+1)

2
. 

Theorem 1.3: The Jelly fish graph 𝐽(𝑚, 𝑛) is a 5-pseudo complete 2-colorable graph and 

𝜓𝑠
2 𝐽𝑚,𝑛 = 5. 

Proof: The graph 𝐽𝑚,𝑛  is defined as follows: 

𝑉 𝐽𝑚,𝑛 = {𝑢, 𝑣, 𝑤, 𝑥}⋃{𝑢𝑖/1 ≤ 𝑖 ≤ 𝑚}⋃{𝑣𝑖/1 ≤ 𝑗 ≤ 𝑛} and  
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 𝐸 𝐽𝑚,𝑛 =   𝑢, 𝑢𝑖 /1 ≤ 𝑖 ≤ 𝑚 ⋃  𝑣, 𝑣𝑗  /1 ≤ 𝑗 ≤ 𝑛 ⋃  𝑢, 𝑤 ,  𝑢, 𝑥 ,  𝑤, 𝑣 ,  𝑤, 𝑥 ,  𝑥, 𝑣   

Define 𝐶: 𝑉 𝐽𝑚,𝑛 → {1,2,3,4,5} as follows: 

                    𝐶 𝑢 = 2, 𝐶 𝑤 = 4, 𝐶 𝑥 = 1, 𝐶 𝑣 = 3, 𝐶 𝑢1 = 5, 𝐶 𝑣1 = 5 and assign for the 

rest of the vertices any of these five colors. Then 𝐶 is 5-pseudo complete 2-coloring of 𝐽𝑚,𝑛  and  

hence    𝜓𝑠
2 𝐽𝑚,𝑛 = 5. Claim: 𝜓𝑠

2 𝐽𝑚,𝑛 ≤ 5. Suppose 𝜓𝑠
2 𝐽𝑚,𝑛 = 6 under some optimal pseudo 

achromatic d-coloring  obviously f will assign distinct colors to the higher degree vertices. 

Therefore the colors of 𝑢, 𝑣, 𝑤, 𝑥 must be distinct. Now the 6th color must appear on the pendent 

vertices of 𝐽𝑚,𝑛 . Since 𝑥 and 𝑤 are not adjacent to the pendent vertices there exists atleast one 

color pair with distance d having no edge between them in 𝐽𝑚,𝑛 , a contradiction. Hence 

𝜓𝑠
2 𝐽𝑚,𝑛 ≤ 5. Therefore 𝜓𝑠

2 𝐽𝑚,𝑛 = 5. 

The figure below shows the 5-pseudo complete 2-coloring of the Jelly fish graph 𝐽5,4 

 

 

                            𝑢         2                                                      𝑣         3                 4         𝑤               𝑥        

1 

 

                                                                                   

 

 

𝑢1        5  𝑢2        5 𝑢3       2   𝑢4       3 𝑢5      4       𝑣1     5      𝑣2      2  𝑣3       3  𝑣4      5 

                                                            Figure (1) 

 

Theorem 1.4: Let 𝐺 be any graph. Then the 1 crown graph 𝐺ʘ𝐾1,1 obtained from 𝐺 by 

identifying the central vertex of 𝐾1,1with each vertex of 𝐺. Then 𝜓𝑠
𝑑 𝐺ʘ𝐾1,1 = 𝜓 + 1. 
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Proof:                   Let  𝑉 𝐺 =  𝑢1, 𝑢2, … 𝑢𝑝 .  Let 𝑉 𝐺ʘ𝐾1,1 = 𝑉(𝐺)⋃{𝑢1
′ , 𝑢2

′ , … . 𝑢𝑝
′ } and                       

 𝐸 𝐺ʘ𝐾1,1 = 𝐸(𝐺)⋃{(𝑢𝑖 , 𝑢𝑖
′ )/1 ≤ 𝑖 ≤ 𝑝}. Let 𝑓 be any pseudo complete d-coloring of 𝐺ʘ𝐾1,1. 

Let 𝑓(𝑉 𝐺ʘ𝐾1,1 = 𝑓(𝑉 𝐺 = {1,2, . . , 𝜓} and let the set of vertices in {𝑢1
′ , 𝑢2

′ , … . 𝑢𝑝
′ } which are 

adjacent to the vertices of 𝐺 receiving colors 1,2,..,d-1 assigned colors 𝜓 −  𝑑 − 1 + 𝑖 where 

1 ≤ 𝑖 ≤ 𝑑 − 1 and the remaining vertices of {𝑢1
′ , 𝑢2

′ , … . 𝑢𝑝
′ } assigned the color 𝜓 + 1under 𝑓. 

Then 𝑓 is a 𝜓 + 1 −pseudo complete d-coloring of 𝐺ʘ𝐾1,1 and hence 𝜓𝑠
𝑑 𝐺ʘ𝐾1,1 ≥ 𝜓 + 1. We 

claim 𝜓𝑠
𝑑 𝐺ʘ𝐾1,1 = 𝜓 + 1. Suppose 𝑓 uses 𝜓 + 2 colors then (𝜓 + 2)𝑡ℎ  color has to be 

adjacent with the ψcolors of 𝐺 and the set of vertices 𝑢𝑖
′  receiving the (𝜓 + 1)𝑡ℎ  color with the 

distance d . Suppose 𝑓 has a few redundant vertices where one of the ψ-colors is used. We can 

recolor any such vertex with the (𝜓 + 2)𝑡ℎ  color. But as the maximum number of colors used in 

a pseudo complete d-coloring of 𝐺 is ψ, (𝜓 + 2)𝑡ℎ  color must have non adjacency with some of 

the ψ-colors of 𝐺. Those colors cannot be assigned to the vertices 𝑢𝑖
′  and hence results in atleast 

one pair of colors in which (𝜓 + 2)𝑡ℎ  color is present with no edge between them, a 

contradiction. Therefore  𝑓 ≤ 𝜓 + 1 and hence 𝜓𝑠
𝑑 𝐺ʘ𝐾1,1 = 𝜓 + 1. 

Theorem 1.5:Let 𝑘 and𝑑 be positive integers with 𝑘 ≥ 2𝑑. Let 𝐶𝑛  be the cycle on n vertices. Then 

𝜓𝑠
𝑑 𝐶𝑛 = 2𝑘 − 1,2𝑘 or 2𝑘 + 1 according as : 𝑘 − 𝑑  2𝑘 − 1 ≤ 𝑛 ≤ 𝑘 2𝑘 − 2𝑑 + 1 + 𝑘 − 1           

or 𝑘 2𝑘 − 2𝑑 + 1 + 𝑘 ≤ 𝑛 ≤  𝑘 − 𝑑 + 1  2𝑘 + 1 − 1 or  𝑘 − 𝑑 + 1  2𝑘 + 1 ≤ 𝑛 ≤

 𝑘 − 𝑑 + 2   2𝑘 + 1 − 1. 

Proof: First observe that, for any 𝑛, 𝑑 there is a unique 𝑘 such  that   𝑘 − 𝑑  2𝑘 − 1 ≤ 𝑛 ≤

 𝑘 − 𝑑 + 2  2𝑘 + 1 − 1. If 𝜓𝑠
𝑑 𝐶𝑛 = 𝜓,then 𝐶𝑛  contains atleast 

𝜓 𝜓−2𝑑+1 

2
 edges and hence 

𝜓 𝜓−2𝑑+1 

2
≤ 𝑛. Therefore 𝜓𝑠

𝑑 𝐶𝑛 ≤ 2𝑘 if  𝑘 − 𝑑  2𝑘 − 1 ≤ 𝑛 ≤  𝑘 − 𝑑 + 1  2𝑘 + 1 − 1 

and 2𝑘 + 1  if    𝑘 − 𝑑 + 1  2𝑘 + 1 ≤ 𝑛 ≤  𝑘 − 𝑑 + 2  2𝑘 + 1 − 1      

Case (i):  𝑘 − 𝑑  2𝑘 − 1 ≤ 𝑛 ≤ 𝑘 2𝑘 − 2𝑑 + 1 + 𝑘 − 1 

Clearly 𝜓𝑠
𝑑 𝐶𝑛 ≤ 2𝑘 suppose 𝜓𝑠

𝑑 𝐶𝑛 = 2𝑘. Let 𝑓 be any 2𝑘 −pseudo complete d-coloring of 𝐶𝑛  

with color classes 𝑉1 , 𝑉2 , … 𝑉2𝑘  where for 1 ≤ 𝑖 ≤ 2𝑘, 𝑉𝑖  be the set of vertices, receiving color 𝑐𝑖 . 

Obtain a new graph 𝐺∗ with vertex set 𝑣1, 𝑣2, … 𝑣2𝑘 . The edge set 𝐸(𝐺∗) is obtained by 

introducing 𝑆𝑖𝑗  edges joining 𝑣𝑖  and 𝑣𝑗  where 𝑆𝑖𝑗 =   𝑉𝑖 , 𝑉𝑗    with 𝐷𝑘(𝑖, 𝑗) ≥ 𝑑 is the number of 

edges of 𝐶𝑛  having one end in 𝑉𝑖  and other end in 𝑉𝑗 . As 𝑓 is 2𝑘 −pseudo d-complete, 𝑆𝑖𝑗 ≥ 1 for 
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each 𝑖 ≠ 𝑗. Clearly 𝐺∗ is Euclerian and an Euler Tour of 𝐺∗ can be obtained by traversing in the 

order of the vertices of 𝐶𝑛also 𝑓 is 2𝑘 −psuedo    d-complete, the underlying graph of 𝐺∗ is 𝐺2𝑘
𝑑 . 

To obtain an Eulerian super graph of the odd,regular graph 𝐺2𝑘
𝑑  we have to add atleast 𝑘  new 

edges. Hence 𝑛 ≥ 𝑘 2𝑘 − 2𝑑 + 1 + 𝑘, a contradiction. Hence 𝜓𝑠
𝑑 𝐶𝑛 ≤ 2𝑘 − 1. To obtain 

equality, we have to obtain a  2𝑘 − 1 −pseudo complete d- coloring for 𝐶𝑛 . For this consider 

𝐺2𝑘−1
𝑑  and label its vertices by 𝑣1, 𝑣2 , … 𝑣2𝑘−1 . Let T be any euler tour of 𝐺2𝑘−1

𝑑 . If the 𝑖𝑡ℎ  edge of 

T is say 𝑣𝑘𝑣𝑙  then color the 𝑖𝑡ℎ  vertex of 𝐶 𝑘−𝑑 (2𝑘−1) by 𝑐𝑙 . This yields a                      2𝑘 −

1 −pseudo complete d-coloring of 𝐶 𝑘−𝑑 (2𝑘−1) with  2𝑘 − 1 −colors. Now this coloring of 

𝐶 𝑘−𝑑 (2𝑘−1) can be extended to  2𝑘 − 1 −pseudo complete d-coloring of 𝐶𝑛  by subdividing an 

edge 𝑒 = (𝑢, 𝑣) of 𝐶 𝑘−𝑑 (2𝑘−1), 𝑛 − 𝐶 𝑘−𝑑 (2𝑘−1) times and assigning to each new vertex either 

the color of 𝑢 or the color of 𝑣. Hence 𝜓𝑠
𝑑 𝐶𝑛 = 2𝑘 − 1. 

Case 2: 𝑘 2𝑘 − 2𝑑 + 1 + 𝑘 ≤ 𝑛 ≤  𝑘 − 𝑑 + 1  2𝑘 + 1 − 1 

Once again 𝜓𝑠
𝑑 𝐶𝑛 ≤ 2𝑘. To establish the equality, consider a perfect matching F of 𝐺2𝑘

𝑑  and 

obtain a new graph 𝐺2𝑘
𝑑∗

 from 𝐺2𝑘
𝑑  by duplicating the edges of F. Clearly 𝐺2𝑘

𝑑∗
 is  2𝑘 − 2𝑑 +

2−regular and hence it is eulerian. Let T be the euler tour of 𝐺2𝑘𝑑∗. As in case (i), T gives 2𝑘- 

pseudo complete d-coloring for the cycle 𝐶𝑘 2𝑘−2𝑑+1 +𝑘 . Using the subdivision method as in case 

(i), we can obtain a 2𝑘 −pseudo complete d-coloring for 𝐶𝑛 . 

Case (iii)  𝑘 − 𝑑 + 1  2𝑘 + 1 ≤ 𝑛 ≤  𝑘 − 𝑑 + 1  2𝑘 + 1 − 1 

Here consider the graph 𝐺2𝑘+1
𝑑  and its Euler tour T and proceed as in case (i). 

The figure (2) below shows 𝐺6
2∗

 from 𝐺6
2 by duplicating the edges  1,4 ,  2,5 , (3,6) which 

2𝑘 − 2𝑑 + 2 = 4-regular. 

                                                                                          

 

 

 

 



 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

International Research Journal of Mathematics, Engineering and IT (IRJMEIT) 

18 | P a g e  

                                                                                       1 
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                                                                                   Figure (2) 

  

Corollary 1.6: Let 𝑃𝑛  be the path of length 𝑛 − 1. Then 𝜓𝑠
𝑑 𝑃𝑛 = 2𝑘 − 1,2𝑘 or 2𝑘 + 1 

according as  𝑘 − 𝑑  2𝑘 − 1 ≤ 𝑛 ≤ 𝑘 2𝑘 − 2𝑑 + 1 − 1, 𝑘 2𝑘 − 2𝑑 + 1 ≤ 𝑛 ≤

 𝑘 − 𝑑 + 1  2𝑘 + 1 − 1 or  𝑘 − 𝑑 + 1  2𝑘 + 1 ≤ 𝑛 ≤  𝑘 − 𝑑 + 2  2𝑘 + 1 − 1. This can 

be proved on similar lines as in theorem 1.5. 

Theorem 1.7: Let 𝑛1, 𝑛2, … . , 𝑛𝑚 , 𝑑 be positive integers, where 𝑚 ≥ 3, 𝑛1 ≤ 𝑛2 ≤ … . ≤ 𝑛𝑚  and 

𝑛 +  𝑚 − 1 𝑑 + 1 ≥ 4𝑑. Also let 𝑛𝑚 ≤
𝑛− 𝑚−1 𝑑+1

2
+ 1 where 𝑛 =  𝑛𝑖 . Then 𝐾𝑛1,𝑛2,….,𝑛𝑚

is 

 
𝑛+ 𝑚−1 𝑑+1

2
 −pseudo complete d-colorable graph and 𝜓𝑠

𝑑 𝐾𝑛1,𝑛2 ,….,𝑛𝑚
 =  

𝑛+ 𝑚−1 𝑑+1

2
 . 

Proof: Let 𝑉𝑖 =  𝑣𝑖𝑗 /1 ≤ 𝑗 ≤ 𝑛𝑖  denote 𝑖𝑡ℎ  partite set of 𝐾∗ = 𝐾𝑛1,𝑛2,….,𝑛𝑚
. For 1 ≤ 𝑖 ≤ 𝑚, 

color 𝑣𝑖1 by 𝑐 𝑖−1 𝑑+1 . Now arrange the remaining vertices 𝑉 ′ = 𝑉 𝐾∗ −  𝑣𝑖1/1 ≤ 𝑖 ≤ 𝑚  in 

the lexicographic order with respect to the indices 𝑖, 𝑗  of 𝑣𝑖𝑗 . If 𝑛 and 𝑚 are of the same parity, 

then color the 𝑛 − 𝑚 vertices of 𝑉 ′  with colors 𝑐2, 𝑐3 , … 𝑐𝑑,𝑐𝑑+1 , … 𝑐𝑛+ 𝑚−1 𝑑+1

2

 , 𝑐2, 𝑐3, … 𝑐𝑑, … 

respectively in order. This color will be pseudo d- complete if and only if there  is no positive 

integer 𝑗,where 𝑚𝑑 + 1 ≤ 𝑗 ≤ 
𝑛+ 𝑚−1 𝑑+1

2
  such that the set of the vertices of  𝑉 ′  corresponding 

to the sequence       𝑐𝑗 ,𝑐𝑗+1 , … 𝑐𝑛 + 𝑚−1 𝑑+1

2

 , 𝑐𝑚𝑑 +1, …  𝑐𝑗  is contained in some partite set of 𝐾∗. But 
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the cardinality of such a set is   
𝑛+ 𝑚−1 𝑑+1

2
+  1 − 𝑗 +  𝑗 − 𝑚𝑑 =

𝑛+ 𝑚−1 𝑑+1

2
+ 1 and hence 

taking into account, the initial vertex of this partite set, this partite set should contain 

𝑛+ 𝑚−1 𝑑+1

2
+ 2 vertices. But this is not the case as per our hypothesis. Hence the given coloring 

is a pseudo complete d-coloring of 𝐾∗using  
𝑛+ 𝑚−1 𝑑+1

2
 colors when 𝑛 and 𝑚 are of same parity. 

If  𝑛 and 𝑚 are of opposite parity, color the vertices of 𝑉 ′  with 

𝑐𝑚𝑑 +1 ,…., … 𝑐𝑛+ 𝑚 −1 𝑑

2

, 𝑐𝑚𝑑 +1 , …, … 𝑐𝑛+ 𝑚 −1 𝑑

1

, 𝑐𝑚𝑑 +1, …. respectively in order. Once again this 

coloring yields a pseudo complete d-coloring of 𝐾∗ using  
𝑛+ 𝑚−1 𝑑+1

2
  colors. Hence 𝜓𝑠

𝑑 𝐾∗ ≥ 

 
𝑛+ 𝑚−1 𝑑+1

2
     To establish equality, consider any pseudo complete d-coloring 𝜍 of 𝐾∗ with 

𝜓𝑠
𝑑 𝐾∗ = 𝜓. Let 𝐶1 = {𝑐𝑖/𝑐𝑖 is assigned to exactly one vertex of 𝐾∗}and 𝐶2 = ς(V 𝐾∗ − 𝐶1. Let 

 𝐶𝑖 = 𝑥𝑖  for 𝑖 = 1,2. Then we have 𝑥1 ≤  𝑚 − 1 𝑑 + 1 and 𝑥1 + 𝑥2 = 𝜓. If 

ψ≥  
𝑛+ 𝑚−1 𝑑+1

2
 , 𝑥1 + 2𝑥2 ≤ 𝑛 and hence 2𝜓 ≤ 𝑥1 + 𝑛. Suppose ψ≥

𝑛+ 𝑚−1 𝑑+2

2
 which implies 

𝑛 +  𝑚 − 1 𝑑 + 2 ≤ 𝑥1 + 𝑛 then  𝑚 − 1 𝑑 + 2 ≤ 𝑥1, a contrtadiction. Therefore 𝜓𝑠
𝑑 𝐾∗ = 

 
𝑛+ 𝑚−1 𝑑+1

2
 . 

2. Further results of pseudo-d-achromatic number using Partition  graphs 

                      The chromatic, achromatic and pseudo achromatic numbers were defined by 

Sampath Kumar and Bhave [5] in terms of the partition graphs. Now we define d-chromatic 

number 𝜒𝑑(𝐺),         d-achromatic number 𝜓𝑑(𝐺) and pseudo d-achromatic number 𝜓𝑠
𝑑 𝐺  in 

terms of Partition graphs. 

Definition 2.1: Let P be a partition of V(G) of a graph G. The Partition graph P(G) of G is a 

graph with point set 𝑃 = {𝑉1 , 𝑉2 , … 𝑉𝑘} where 𝑉𝑖  and 𝑉𝑗  are adjacent if there exists 𝑣𝑖 ∈ 𝑉𝑖  and  

𝑣𝑗 ∈ 𝑉𝑗  such that 𝑣𝑖𝑣𝑗  is a line in G. 

Definition 2.2: Let k and d be positive integers with 𝑘 ≥ 2𝑑. A partition is complete with respect 

to  𝑘, 𝑑 −coloring if 𝑃 𝐺 = 𝐺𝑘
𝑑 . Let 𝑝(𝐺) denote  the class of all partition graphs of G, and 

𝑝(𝐺)       denote the class of all partition Graphs of G which are homomorphic images of G. It is easy 

to see that 

Lemma 2.3: For a graph G, n and d be positive integers with 𝑛 ≥ 2𝑑. 
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1) 𝜒𝑑 𝐺 = 𝑚𝑖𝑛 𝑛/𝐺𝑛
𝑑 ∈ 𝑝(𝐺)        

2) 𝜓𝑑 𝐺 = 𝑚𝑎𝑥 𝑛/𝐺𝑛
𝑑 ∈ 𝑝(𝐺)        

3) 𝜓𝑠
𝑑 𝐺 =  𝑚𝑎𝑥 𝑛/𝐺𝑛

𝑑 ∈ 𝑝 𝐺   whereas 𝜓𝑠 𝐺 = 𝑚𝑎𝑥 𝑛/𝐾𝑛 ∈ 𝑝(𝐺)  

Theorem 2.4: For  any graph G and any point 𝑢 ∈ 𝑉 𝐺 , 𝜓𝑠
𝑑 𝐺 ≥ 𝜓𝑠

𝑑 𝐺 − 𝑢 ≥ 𝜓𝑠
𝑑 𝐺 − 1 

Proof: Let 𝜓𝑠
𝑑 𝐺 − 𝑢 = 𝑛. Let 𝑛, 𝑑 be positive integers with 𝑛 ≥ 2𝑑. Then there exists a 

partition 𝑃′ =  𝑉1
′ , 𝑉2

′ , …𝑉𝑛
′   with respect to d-coloring of 𝑉 𝐺 −  𝑢  such that 𝑃′ (𝐺 −  𝑢 ) =

𝐺𝑛
𝑑 . Now since 𝑃 =  𝑉1

′⋃ 𝑢 , 𝑉2
′ , … , 𝑉𝑛

′  is a partition of V(G) such that 𝑃 𝐺 = 𝐺𝑛
𝑑 . It follows 

that 𝜓𝑠
𝑑 𝐺 ≥ 𝜓𝑠

𝑑 𝐺 − 𝑢 . To prove the other inequality, suppose 𝜓𝑠
𝑑 𝐺 = 𝑛, then there exists a 

partition P of V(G) with respect to d-coloring such that 𝑃 𝐺 = 𝐺𝑛
𝑑 . Let 𝑢 ∈ 𝑉1 ∈ 𝑃. Clearly the 

points of 𝑃 −  𝑉1  induces 𝐺𝑛−1
𝑑  as subgraph in P(G) and hence 𝜓𝑠

𝑑 𝐺 − 𝑢 ≥ 𝑛 − 1 = 𝜓𝑠
𝑑 𝐺 −

1. Thus we get  𝜓𝑠
𝑑 𝐺 ≥ 𝜓𝑠

𝑑 𝐺 − 𝑢 ≥ 𝜓𝑠
𝑑 𝐺 − 1. 

Theorem 2.5: For any graph and a line 𝑒 ∈ 𝐸 𝐺 , 𝜓𝑠
𝑑 𝐺 ≥ 𝜓𝑠

𝑑 𝐺 − 𝑒 ≥ 𝜓𝑠
𝑑 𝐺 − 1 

Proof: Suppose  𝜓𝑠
𝑑 𝐺 = 𝑛. Let 𝑛, 𝑑 be positive integers with 𝑛 ≥ 2𝑑. Then there exists a 

partition P of V(G) such that 𝑃 𝐺 = 𝐺𝑛
𝑑  with respect to d-coloring of G. If the line e joins a 

point of 𝑉𝑖  to a point of 𝑉𝑗  where 𝑉𝑖 , 𝑉𝑗 ∈ 𝑃, 𝑖 ≠ 𝑗 then the partition 𝑃′ = 𝑃 −  𝑉𝑖 , 𝑉𝑗  ⋃ 𝑉𝑖⋃𝑉𝑗   of 

V(G) will be such that          𝑃′ (𝐺 −  𝑒 ) which induces 𝐺𝑛−1
𝑑  as subgraph. Hence 𝜓𝑠

𝑑 𝐺 − 𝑒 ≥

𝑛 − 1 = 𝜓𝑠
𝑑 𝐺 − 1 on the other hand, if P is a partition of V(G) such that 𝑃′ (𝐺 −  𝑒 ) = 𝐺𝑛

𝑑  

with respect to d-coloring of G where 𝑚 = 𝜓𝑠
𝑑 𝐺 − 𝑒 then for the same partition P, 𝑃 𝐺 = 𝑚 

and  hence 𝜓𝑠
𝑑 𝐺 ≥ 𝑚 = 𝜓𝑠

𝑑 𝐺 − 𝑒 . 

Theorem 2.6: For any graph G, with 𝜓𝑠
𝑑 𝐺 > 𝜓𝑑(𝐺) there exists a line x such that 𝜓𝑠

𝑑 𝐺 −

𝑥=𝜓𝑠𝑑𝐺 

Proof: Let 𝜓𝑠
𝑑 𝐺 > 𝜓𝑑(𝐺) and 𝜓𝑠

𝑑 𝐺 = 𝑛 where 𝑛, 𝑑 are positive integers with 𝑛 ≥ 2𝑑. Then 

there exists a partition P of V(G) such that 𝑃 𝐺 = 𝐺𝑛
𝑑  with respect to d-coloring of G. Clearly 

the partition is not homomorphic, for otherewise 𝜓𝑠
𝑑 𝐺 ≥ 𝑛. Hence there is a line joining 

points of the same set 𝑉𝑖  of P. This line x will be such that 𝑃 𝐺 − 𝑥 = 𝐺𝑛
𝑑 . Therefore 𝜓𝑠

𝑑 𝐺 −

𝑥≥𝑛 but by theorem 2.5, 𝜓𝑠𝑑𝐺−𝑥≤𝑛. Thus 𝜓𝑠𝑑𝐺−𝑥=𝑛=𝜓𝑠𝑑𝐺. 
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Remark 2.7: The converse of theorem 2.6 need not be true. The graph G in figure (3) has a line x 

such that 𝜓𝑠
𝑑 𝐺 − 𝑥 = 𝜓𝑠

𝑑 𝐺  

                                                                    

                                               2                                            3                           

                                                        

                                             

 

    

      2                          𝑥                 4                                      1                              5                             2 

                                                                      Figure (3)                                                                   

Here 𝜓𝑠
2 𝐺 = 𝜓𝑠

2 𝐺 − 𝑥 = 5. But 𝜓𝑠
2 𝐺 = 𝜓2(𝐺) = 5. 

Theorem 2.8: If G is a graph with q lines then 𝜓𝑑(𝐺) ≤  𝜓𝑠
𝑑 𝐺 ≤ 𝑟 where r is the maximum 

integer with 𝑞 ≥
𝑟(𝑟−2𝑑+1)

2
. 

Proof: Let 𝜓𝑠
𝑑 𝐺 = 𝑛 where 𝑛 and 𝑑 are positive integers with 𝑛 ≥ 2𝑑. Then there exists a 

partition P of V(G) such that 𝑃 𝐺 = 𝐺𝑛
𝑑  with respect to any d-coloring of G. Then G has atleast 

𝑛(𝑛−2𝑑+1)

2
 lines. Hence 𝑞 ≥

𝑛(𝑛−2𝑑+1)

2
. If 𝐺 = 𝑞𝐾2 where 𝑞 =

𝑟(𝑟−2𝑑+1)

2
 then 𝜓𝑠

𝑑 𝐺 = 𝑟. This 

shows that the bound is attained. 

Definition 2.9: A graph H is a partition realizable from a graph G, if P(G) = H for some 

partition P of V(G). 

Lemma 2.10: If G is a graph with q lines and no isolated points then G is a partition realizable 

from 𝑞𝐾2  

that is a graph with q copies 𝐾2. 

Lemma 2.11: If H is a subgraph of G, 𝑞and𝑞1 are the number of lines in G and H respectively, 

then G is a partition realizable from 𝐻⋃𝑟𝐾2 where 𝑟 = 𝑞 − 𝑞1 . In lemma 2.10 and 2.11, in 
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forming the partition graphs we observe that no lines of G are destroyed and hence the partitions 

are homomorphisms of G. 

Theorem 2.12: If a and b  𝑎 > 𝑏 > 2𝑑  are two positive integers then there exists a graph G with 

𝜓𝑑 𝐺 =  𝜓𝑠
𝑑 𝐺 = 𝑎  and 𝜒𝑑 𝐺 = 𝑏 

Proof: Let 𝐺 = 𝐺𝑏
𝑑⋃𝑟𝐾2 where 𝑟 =

𝑎(𝑎−2𝑑+1)

2
−

𝑏(𝑏−2𝑑+1)

2
. Then by lemma 2.11, there exists a 

partition P of V(G) with 𝑃 𝐺 = 𝐺𝑎
𝑑 . Hence with respect to any d-coloring of G, 𝜓𝑠

𝑑 𝐺 ≥ 𝑎. 

Also G has 
𝑎(𝑎−2𝑑+1)

2
 lines. Hence 𝜓𝑠

𝑑 𝐺 ≤ 𝑎. Thus 𝜓𝑠
𝑑 𝐺 = 𝑎.Since P is a homomorphism of 

G, we have 𝜓𝑑 𝐺 = 𝑎 and 𝜒𝑑 𝐺 = 𝑏 follows since 𝐺𝑏
𝑑  is a component of G and every other 

component of G is 𝐾2. Hence the proof. 

Definition 2.13: A graph G is 𝑘-achro-d-critical if 𝜓𝑑 𝐺 − 𝑥 < 𝜓𝑑 𝐺 = 𝑘 for every line 𝑥 in 

G where 𝑘 ≥ 2𝑑. 

Theorem 2.13: If G is 𝑘 -achro d-critical where 𝑘 ≥ 2𝑑 then G has exactly 
𝑘(𝑘−2𝑑+1)

2
 lines and if 

𝜓𝑑 𝐺 = 𝑘 and G has 
𝑘(𝑘−2𝑑+1)

2
 lines then G is k-achro d- critical . 

Proof: Let G be 𝑘 -achro d-critical graph, let 𝑃 𝐺 = 𝐺𝑘
𝑑  where 𝑃 = {𝑉1 , 𝑉2 , …𝑉𝑘 }  is a 

homomorphism with respect to d-coloring of G. Then each set 𝑉𝑖  is independent and there is only 

one line joining 𝑉𝑖  and 𝑉𝑗  in G with 𝐷𝑘(𝑖, 𝑗) ≥ 𝑑 where 𝑖, 𝑗 ∈  1,2, . . , 𝑘 , 𝑖 ≠ 𝑗. This implies G 

has exactly 
𝑘(𝑘−2𝑑+1)

2
  lines. Conversely, if 𝜓𝑑 𝐺 = 𝑘 and G has exactly 

𝑘(𝑘−2𝑑+1)

2
 lines then for 

any line 𝑥 in G we have          𝜓𝑑 𝐺 − 𝑥 < 𝑘 by theorem 2.8. Hence G is 𝑘 -achro d-critical. 

Theorem 2.14: A graph G is 𝑘 -achro d-critical if and only if it is 𝑘 -pseudo d-critical (that is 𝑘 

edged d-critical) 

Proof: Let G be 𝑘 -pseudo d-critical then there exists a complete partition 𝑃 = (𝑉1 , 𝑉2 , … 𝑉𝑘) of 

V(G) such that 𝑃 𝐺 = 𝐺𝑘
𝑑  with respect to d-coloring of G. We claim P is a homomorphism of G. 

For suppose 𝑉𝑖 ∈ 𝑃 is not independent and 𝑥 be a line of G with both ends in 𝑉𝑖 , then for some 

partition P of V(G), we get 𝑃 𝐺 − 𝑥 = 𝐺𝑘
𝑑 . This implies that 𝜓𝑠

𝑑 𝐺 − 𝑥 ≥ 𝑘, which is a 

contradiction. Thus P is a homomorphism of G. Hence 𝜓𝑑 𝐺 ≥ 𝑘, but 𝜓𝑑 𝐺 ≤ 𝜓𝑠
𝑑 𝐺 = 𝑘 

which implies 𝜓𝑑 𝐺 = 𝑘. Also for every line 𝑥 of G, 𝜓𝑑 𝐺 − 𝑥 ≤ 𝜓𝑠
𝑑 𝐺 − 𝑥 < 𝜓𝑠

𝑑 𝐺 = 𝑘 
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(since G is 𝑘 pseudo d-critical) . Therefore we get 𝜓𝑑 𝐺 − 𝑥 < 𝑘. Hence G is 𝑘 -achro d-critical. 

Conversely, suppose G is 𝑘 -achro d-critical. By theorem 2.13, G has 
𝑘(𝑘−2𝑑+1)

2
 lines. Hence by 

theorem 2.8, 𝜓𝑠
𝑑 𝐺 ≤ 𝑘 = 𝜓𝑑 𝐺 . But we have 𝑘 = 𝜓𝑑 𝐺 ≤ 𝜓𝑠

𝑑 𝐺 . Hence 𝜓𝑠
𝑑 𝐺 = 𝑘. Again 

by theorem 2.8, 𝜓𝑠
𝑑 𝐺 − 𝑥 < 𝑘 for any line 𝑥. Hence G is 𝑘 -pseudo d-critical. 

Definition 2.15: An 𝑘 -edge d-critical graph is one which is 𝑘 -pseudo d-critical (hence 𝑘 -achro 

d-critical). 

Construction of 𝒌 -edge d-critical graphs: 

                Let H be a subgraph of G. Then we shall denote the subgraph of G obtained by deleting 

all lines of H and the resulting isolated points in G by 𝐺 − 𝐻. It is clear that  

Lemma 2.16: Let a graph H be partition realizable from G and 𝐻1 be an induced subgraph of H, 

then 1) 𝐻1 is a partition realizable from an induced subgraph 𝐺1 of G. 2) 𝐻 − 𝐻1 is a partition 

realizable from 𝐺 − 𝐺1. 

         We observe that 𝐺𝑘
𝑑 − 𝐺𝑘−1

𝑑 = 𝐾1,𝑘−2𝑑+1⋃(𝑑 − 1)𝐾2 where 𝑘 ≥ 2𝑑. 

Corollary 2.17: If 𝐺𝑘
𝑑  where 𝑘 ≥ 2𝑑 is a partition realizable from G, then there exists an induced 

subgraph 𝐺1 of G such that  

(i) 𝐺𝑘−1
𝑑  is a partition realizable from 𝐺1 and 

(ii) 𝐾1,𝑘−2𝑑+1⋃(𝑑 − 1)𝐾2 is a partition realizable from 𝐺 − 𝐺1. 

The above lemma suggests a method of constructing 𝑘 -edge d-critical graphs from the set of all      

(𝑘 − 1) −edge d-critical graphs. The method is as follows. We consider the graphs with no 

isolated points. 

          Let  𝐺𝑖  be the collection of all (𝑘 − 1) −edge d-critical graphs and  𝐻𝑗   be the collection 

of all graphs with 𝑘 − 2𝑑 + 1 + 𝑑 − 1 = 𝑘 − 𝑑 lines such that 𝐾1,𝑘−2𝑑+1⋃(𝑑 − 1)𝐾2 is a 

partition realizable from 𝐻𝑗 . Since 𝐺𝑘−1
𝑑  is a partition realizable from 𝐺𝑖  and 𝐾1,𝑘−2𝑑+1⋃(𝑑 −

1)𝐾2 is a partition realizable from 𝐻𝑗 , 𝐺𝑘
𝑑  is a partition realizable from G each of the graphs 

formed below. Further each of the following graphs has exactly 
𝑘(𝑘−2𝑑+1)

2
 lines. Hence each is 𝑘 -

edge d-critical graph. 
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           Consider a graph 𝐺𝑖 . Let 𝑃 = {𝑉1 , 𝑉2 , … 𝑉𝑘−1} be a complete partition of V(𝐺𝑖). It is easy to 

see that each 𝐻𝑗  has atleast 𝑘 − 2𝑑 + 1 + 2(𝑑 − 1) = 𝑘 − 1 points of degree 1 say 𝑢𝑟  where 

𝑟 = 1,2, … . , 𝑘 − 1. Let G be a graph obtained from 𝐺𝑖  and 𝐻𝑗  by identifying some, all or none of 

the points 𝑢𝑟  with the points of 𝐺𝑖  such that no two points 𝑢𝑟  are identified with the points of 

same set 𝑉𝑖 ∈ 𝑃. We  claim that any k-edge d-critical graph  is isomorphic to a graph obtained 

above. For, let G be 𝑘 -edge d-critical graph and 𝑃 𝐺 = 𝐺𝑘
𝑑 . Then as 𝐺𝑘−1

𝑑  is an induced 

subgraph of 𝐺𝑘
𝑑 , there exists an induced subgraph 𝐺𝑖

′  of G such that 𝐺𝑘−1
𝑑  is a partition realizable 

of 𝐺𝑖
′  and 𝐾1,𝑘−2𝑑+1⋃(𝑑 − 1)𝐾2 is a partition realizable from 𝐺 − 𝐺𝑖

′   by corollary 2.17. 

Therefore 𝐺𝑖
′  has 

 𝑘−1 (𝑘−2𝑑)

2
 lines and hence it is  𝑘 − 1 −edge d- critical and 𝐺 − 𝐺𝑖

′  has 𝑘 -d 

lines. Therefore G is isomorphic to one of the graphs obtained above. 

3. Some upper bounds of 𝝍𝒔
𝒅 𝑮 : 

        Let 𝛽0 , 𝛽, 𝛼0, 𝛼 denotes  the point independent number, line independent number, point 

covering number, line covering number respectively. 

Theorem 3.1: For any graph G with p points, 𝜓𝑠
𝑑 𝐺 ≤ 𝑝 − 𝛽0 + 2𝑑 − 1. 

Proof: Let 𝜓𝑠
𝑑 𝐺 = 𝑟. Clearly there exists a partition 𝑃 = {𝑉1 , 𝑉2 , … 𝑉𝑟 } of V(G) such that 

𝑃 𝐺 = 𝐺𝑟
𝑑  where 𝑟 ≥ 2𝑑 with respect to d-coloring of G. Let S be the set of 𝛽0 independent 

points of G. Since any two 𝑉𝑖 , 𝑉𝑗 , 𝑖 ≠ 𝑗 are adjacent in P(G), with  𝑉𝑖 − 𝑉𝑗  𝑟 ≥ 𝑑. It can be seen 

that 𝑉𝑖⋃𝑉𝑗  is not contained in S for all 𝑖, 𝑗. This implies atleast 𝑟 − 2𝑑 + 1 of the sets in P 

intersect 𝑉 𝐺 − 𝑆. Thus, 

                    𝑟 − 2𝑑 + 1 ≤  𝑉 𝐺 − 𝑆 ≤ 𝑝 − 𝛽0 

                       𝜒𝑠
𝑑 = 𝑟 ≤ 𝑝 − 𝛽0 + 2𝑑 − 1 

  Hence 𝜒𝑠
𝑑 ≤ 𝑝 − 𝛽0 + 2𝑑 − 1 

Corollary 3.2: For any graph G, 𝜒𝑠
𝑑(𝐺) ≤  𝛼0 + 2𝑑 − 1 where 𝛼0 is the point covering number of 

G. 

Proof: From theorem 3.1, we get 𝜒𝑠
𝑑(𝐺) ≤ 𝑝 − 𝛽0 + 2𝑑 − 1               (1) where 𝛽0 is the point 

independence number of a graph G. Already, we know that 𝛼0 + 𝛽0 = 𝑝 where 𝛼0 is the point 
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covering number of G. Hence 𝛽0 = 𝑝 − 𝛼0. Applying (1) we get 𝜒𝑠
𝑑(𝐺) ≤  𝑝 − (𝑝 − 𝛼0) + 2𝑑 −

1. Therefore 𝜒𝑠
𝑑(𝐺) ≤  𝛼0 + 2𝑑 − 1. 

Theorem 3.3: For any graph G, (i) 𝜓𝑠
𝑑 𝐺 ≤ 2𝛽1 + 2𝑑 − 1 and (ii) 𝜓𝑠

𝑑 𝐺 ≤ 2(𝑝 − 𝛼1 + 𝑑) − 1 

where 𝛽1 , 𝛼1 be the line independence number and line covering number respectively. 

Proof: (i) If 𝜓𝑠
𝑑 𝐺 = 𝑛 where 𝑛 ≥ 2𝑑 then there exists a partition P of V(G) such that 𝑃 𝐺 =

𝐺𝑛
𝑑  with respect to any d-coloring of G. Also we have 𝛽1 𝐺𝑛

𝑑 =
1

2
 𝑛 − 2𝑑 + 2  or 

1

2
 𝑛 − 2𝑑 +

1 according as n is even or odd. Hence we get, 𝑛≤2𝛽1𝐺𝑛𝑑+2𝑑−1 which implies 

𝑛 ≤ 2𝛽1 𝑃 𝐺  + 2𝑑 − 1. Therefore 𝑛 ≤ 2𝛽1 𝐺 + 2𝑑 − 1. Hence 𝜓𝑠
𝑑 𝐺 ≤ 2𝛽1 + 2𝑑 − 1. 

(ii)Moreover we have 𝛼1 + 𝛽1 = 𝑝 = 𝛼0 + 𝛽0. Therefore 𝛽1 = 𝑝 − 𝛼1 where 𝛼1  is the line 

covering number of G. Substituting in (i) we get 𝜓𝑠
𝑑 𝐺 ≤ 2 𝑝 − 𝛼1 + 2𝑑 − 1. Hence                                  

𝜓𝑠
𝑑 𝐺 ≤ 2 𝑝 − 𝛼1 + 𝑑 − 1 

4. Existence of graphs with the given pseudo-d-achromatic number 

Theorem 4.1: For any positive integers m,n,d such that 𝑚 > 𝑛 and 𝑚 + 𝑛 ≥ 𝑑 there exists a 

graph whose pseudo-d-achromatic number is 𝑚 + 𝑛 + 𝑑 + 1. 

Proof: Construct a graph and call it 𝐺𝑚,𝑛  which is a bipartite graph with a complete bipartite 

subgraph. This graph has bipartition (𝐴, 𝐵) where 𝐴 is  𝑢1, 𝑢2 , … , 𝑢𝑚  ⋃ 𝑦1, 𝑦2 , . . 𝑦𝑛   and 𝐵 is 

 𝑣1 , 𝑣2, … , 𝑣𝑚  ⋃ 𝑥1, 𝑥2, . . 𝑥𝑛  . 𝐸 𝐺 =   𝑢𝑖 , 𝑥𝑗 /1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 ⋃  𝑣𝑖 , 𝑦𝑗  /1 ≤ 𝑖 ≤

𝑚,1≤𝑗≤𝑛⋃𝑦𝑖,𝑥𝑗/1≤𝑖≤𝑛,1≤𝑗≤𝑛⋃𝑢𝑖,𝑣𝑗/1≤𝑖≤𝑗≤𝑚⋃𝑢,𝑣2,𝑣,𝑦𝑛.  

Lower bound:Let us color the graph 𝐺𝑚,𝑛  as follows: 

 For 1 ≤ 𝑖 ≤ 𝑚, color 𝑢𝑖  with 𝑐𝑖  

 For 1 ≤ 𝑖 ≤ 𝑚, color 𝑣𝑖  with 𝑐𝑖+𝑑  

 For 1 ≤ 𝑗 ≤ 𝑛, color 𝑥𝑖  with 𝑐𝑚+𝑗 +𝑑  

 For 1 ≤ 𝑗 ≤ 𝑛, color 𝑦𝑖  with 𝑐𝑚+𝑗+𝑑+1 

 Color 𝑢 with 𝑐𝑚+𝑑+1 

 Color 𝑣 with 𝑐𝑑  
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This yields a pseudo complete d-coloring of 𝐺𝑚,𝑛  with 𝑚 + 𝑛 + 𝑑 + 1 colors. Therefore 

𝜓𝑠
𝑑 𝐺𝑚,𝑛 ≥ 𝑚 + 𝑛 + 𝑑 + 1 

Upper bound: 

        𝐺𝑚,𝑛  is a subgraph of 𝐾𝑚+𝑛+1,𝑚+𝑛+1 . Let 𝑓 be a pseudo complete d-coloring of 𝐾𝑛,𝑛 . Assume 

 𝑓(𝑉(𝐾𝑛,𝑛) ≥ 𝑛 + 𝑑 + 1 where 𝑑 < 𝑛, this means there exists 𝑑 + 1 colors, which are not 

represented in one part (an independent set of vertices) of the graph. This means they must be 

represented in other part which is also an independent set as it is a bipartite graph. Thus there 

are no two vertices colored with 𝑐1, 𝑐2, . . , 𝑐𝑑+1 that are adjacent. This is a contradiction to it 

being a pseudo complete d-coloring of 𝐾𝑛,𝑛 . Hence 𝜓𝑠
𝑑 𝐾𝑛,𝑛 < 𝑛 + 𝑑 + 1. This means 

𝜓𝑠
𝑑 𝐾𝑚+𝑛+1,𝑚+𝑛+1 ≤ 𝑚 + 𝑛 + 𝑑 + 1.  Hence 𝜓𝑠

𝑑 𝐺𝑚,𝑛 ≤ 𝑚 + 𝑛 + 𝑑 + 1. Therefore 

𝜓𝑠
𝑑 𝐺𝑚,𝑛 ≤ 𝑚 + 𝑛 + 𝑑 + 1. 

         The graph 𝐺4,3 is pictured in the figure below with the double line meaning that the two set 

of vertices are joined that is, every vertex in one subset is adjacent to every vertex in other subset. 

Here 𝜓𝑠
𝑑 𝐺4,3 = 11 
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