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ABSTRACT 

In this paper, we have shown the existence of positive solution of the equation  𝑢′′ +

𝑟 𝑡 𝑓 𝑡, 𝑢 = 0  with the boundary conditions. We had showed the existence of at least one 

positive solution based on if a function  𝑓 is either superlinear or sublinear by simple application 

of a fixed point theorem.  The investigated solution in the classical Banach space of smooth 

functions  𝐶  0,∞   with regard to second order ordinary differential equation clearly 

explained in this paper. 
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1.  INTRODUCTION 

The theory of differential equation often times involves the theory of function spaces that are 

defined in terms of properties of pertinent functions and their derivatives. Differential equations 

modeled in Banach spaces have attracted the attention of many researchers throughout last 

century. Most of the efforts are concentrated in the study of the initial value problem. In this 

regard, we are going to investigate solution in the classical Banach space of smooth 

functions𝐶  0,∞   . An ordinary differential equation arises in many different areas of applied 

mathematics and physics; see [9,11] for some references along this line. In this paper we would 

considered the second-order boundary value problem (BVP) 

𝒖′′ + 𝒓 𝒕 𝒇 𝒖, 𝒕 = 𝟎 ,   𝟎 < 𝑡 < 1                          (1.1) 

 
𝜶𝒖 𝟎 − 𝜷𝒖′ 𝟎 = 𝟎,

    𝜸𝒖 𝟏 + 𝜹𝒖′ 𝟏 = 𝟎.         
 and where  𝛼, 𝛽, 𝛾, 𝛿 ≥ 0        (   𝟏. 𝟐) 

By the positive solution of (1.1), (1.2), it means that a function 𝒖(𝒕) is positive on 0 < 𝑡 < 1 and 

satisfies differential equation (1.1). 

And we consider two versions of assumptions that will provide different results. 

         (H.1)    𝑓 ∈ 𝐶( 0,∞ ,  0,∞ ), 

         (H.2)    𝑟 ∈ 𝐶([0,1],  0,∞ )   and  𝒓 𝒕 ≠ 𝟎  for  𝑡 ∈ [0,1]. 

         (H.3)    𝛼, 𝛽, 𝛾, 𝛿 ≥ 0    and    let 𝜌 = 𝛾𝛽 + 𝛼𝛾 + 𝛼𝛿 > 0. 

The boundary value problem (1.1) ,(1.2) arises in many different areas of applied mathematics 

and physics. Additional existence results may be found in [4, 7, 8, 10, 11] references. 

 

2. Premilinaries  

Theorem 2.1   Let 𝐸 be a banach space, and let 𝐾 ⊆ 𝐸 be a cone in 𝐸. Assume Ω1, Ω2 are open 

subsets of 𝐸 with  0 ∈ Ω1, Ω1
     ⊆ Ω2, and let 

                                                        𝑅: 𝐾 ∩  Ω2
     ∖ Ω1 → 𝐾      

be a completely continuous operator such that either 

i.  𝑅𝑢 ≤  𝑢  , 𝑢 ∈ 𝐾 ∩ 𝜕Ω1,   and     𝑅𝑢 ≥  𝑢  , 𝑢 ∈ 𝐾 ∩ 𝜕Ω2  ;  or  
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ii.  𝑅𝑢 ≥  𝑢  , 𝑢 ∈ 𝐾 ∩ 𝜕Ω1 ,   and     𝑅𝑢 ≤  𝑢  , 𝑢 ∈ 𝐾 ∩ 𝜕Ω2.  

Then 𝑅 has a fixed point in  𝐾 ∩  Ω2
     ∖ Ω1  

Our purpose here is to give an existence result for positive solutions to the BVP (1.1) (1.2) 

assuming that 𝑓 is either superlinear or sublinear. We do not require any monotonicity 

assumptions on 𝑓. To be precise, we introduce the notation 

 

i. 𝑓0 ≔ lim𝑢→0
𝑓(𝑢)

𝑢
                                

ii. 𝑓∞ ≔ lim𝑢→∞
𝑓(𝑢)

𝑢
 

Thus, 𝑓0 = 0   and    𝑓∞ = ∞    correspond to the suplinear case, and 𝑓0 = ∞    and    𝑓∞ = 0     

correspond to the sublinear case. By a positive solution of (1.1), (1.2) ,we understand a solution 

𝑢(𝑡) which is positive on 0 < 𝑡 < 1 and   satisfies the differential equation (1.1) for  0 < 𝑡 < 1 

and the boundary conditions (1.2) .By a change of variable , the existence of a positive of (1.1), 

(1.2) may be shown to be equivalent to the existence of a positive radial solution of the semi 

linear elliptic equation   ∆𝑢 + 𝑔  𝑥  𝑓 𝑢 = 0  in the annulus  𝑅1 <  𝑥 < 𝑅2 subject to certain 

boundary  conditions for  𝑅1 =  𝑥   and   𝑥 = 𝑅2 we refer to [10]  for some additional details. 

Lemma 2.2 Let  𝛼𝛽= 1. Then, for  𝑟 ∈  𝐶[0;  1], the boundary value problem (1.1) , (1.2) has the 

Unique solution . 

The proof of (2.1) follows along the lines of the proof that is given in [7] and 

Hence we omit it. 

 

3. The Existence Results 

The main result of this paper is to investigate at least one positive solution in the case of 

suplinear and sublinear case. 

Theorem1: Assume (H.1)-(H.3) hold . Then the BVP (1.1), (1.2) has at least one positive 

solution in the either case. 

i. 𝑓0 = 0   and    𝑓∞ = ∞    (sup linear) ,or 

ii. 𝑓0 = ∞    and    𝑓∞ = 0     (sub linear) 

It will be seen in the proof that theorem 1 is also valid for the more general equation 
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       (1.1)*       𝑢′′ + 𝑓 𝑡, 𝑢 = 0   

with the boundary condition (1.2), provided we assume a certain uniformity with respect to the t 

variable. We state this more general result as: 

Corollary 1: Assume 𝑓 is continuous, 𝑓 𝑡, 𝑢 ≥ 0 for 𝑡 ∈  0,1 , and 𝑢 ≥ 0  with  𝑓 𝑡, 𝑢 ≠ 0 on 

any subinterval of [0,1] for 𝑢 > 0; and let (H.3) hold. Then the boundary value problem (1.1)*, 

(1.2) has at least one positive solution in the either case. 

a. lim𝑢→0+𝑚𝑎𝑥𝑡∈[0,1]
𝑓(𝑢)

𝑢
= 0    and   lim𝑢→∞𝑚𝑎𝑥𝑡∈[0,1]

𝑓(𝑢)

𝑢
= ∞    or 

 

b. lim𝑢→0+𝑚𝑖𝑛𝑡∈[0,1]
𝑓(𝑢)

𝑢
= ∞    and   lim𝑢→∞𝑚𝑎𝑥𝑡∈[0,1]

𝑓(𝑢)

𝑢
= 0     

The proof of theorem (1) will be based on application of the following fixed point theorem 

(theorem 2.1). The proof of the corollary (1) follows from the proof of theorem (1) with obvious 

slight modifications which we shall omit. We will apply the first and second parts  of the above  

fixed point theorem to the superlinear and sublinear cases, respectively.We are going to see into 

ways . 

Case I  superlinear case i.e    𝑓0 = 0   and    𝑓∞ = ∞     

Since (1.1) and (1.2) has a solution  𝑢 = 𝑢(𝑡) iff  𝑢 solves the operator equation 

𝑢 𝑡 =  𝐺 𝑡, 𝑠 
1

0

𝑟 𝑠 𝑓 𝑢 𝑠  𝑑𝑠 ≔ 𝑅𝑢(𝑡) 

Where    𝐺 𝑡, 𝑠  denotes the green’s function for the boundary value problem 

 

                       𝑢′′  𝑡 = 0                                  (2.1) 

𝛼𝑢 0 − 𝛽𝑢′ 0 = 𝛾      𝑢 1 + 𝛿𝑢′ 1 = 0                (2.2) 

 

 

And explicitly given by 

𝐺 𝑡, 𝑠 =

 
 

 
1

𝜌
 𝛾 + 𝛿 − 𝛾𝑡  𝛽 + 𝛼𝑠 , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1

1

𝜌
 𝛽 + 𝛼𝑡  𝛾 + 𝛿 − 𝛾𝑠 , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1
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Consider  𝑘 be cone in  𝐶[0,1] given by: 

𝐾 =  𝑢 ∈ 𝐶 0,1 :𝑢 𝑡 ≥ 0, min 𝑢 𝑡 ≥ 𝑀 𝑢 ,
1

4
≤ 𝑡 ≤ 3/4                      (2.3) 

Where 𝑢 = sup[0,1] 𝑢(𝑡)   and    𝑀 = 𝑚𝑖𝑛  
𝛾+4𝛿

4(𝛾+𝛿)
,
𝛼+4𝛽

4(𝛼+𝛽)
                              (2.4)  

Next, let us define 

𝑤 𝑡 =  𝛾 + 𝛿 − 𝛾𝑡        , 𝜓 𝑡 = 𝛽 + 𝛼𝑡                                                           (2.5) 

So that 

𝐺 𝑡, 𝑠 =  

1

𝜌
𝑤 𝑡 𝜓 𝑠 , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1

1

𝜌
𝑤 𝑠 𝜓 𝑡 , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1

                                                        (2.6) 

 

In this we observe that     𝐺 𝑡, 𝑠 ≤  𝑤 𝑠 𝜓 𝑠 = 𝐺 𝑠, 𝑠 ,   0 ≤ 𝑡 ≤ 𝑠 ≤ 1    

So that, if  𝑢 ∈ 𝑘, then 

𝑅𝑢 𝑡 =  𝐺 𝑡, 𝑠 𝑟 𝑠 𝑓(𝑢(𝑠))𝑑𝑠 ≤  𝐺 𝑠, 𝑠 𝑟 𝑠 𝑓(𝑢(𝑠))𝑑𝑠
1

0

1

0

                         (2.7) 

  Hence     𝑅𝑢 ≤  𝐺 𝑠, 𝑠 𝑟 𝑠 𝑓(𝑢(𝑠))𝑑𝑠
1

0
                                                                            (2.8) 

 

 

Furthermore, for           
1

4
≤ 𝑡 ≤ 3/4 

 

𝐺 𝑡, 𝑠 

𝐺 𝑠, 𝑠 
=    

 
 
 

 
 𝑤 𝑡   

𝑤 𝑠 
, 𝑠 ≤ 𝑡

𝜓 𝑡 

𝜓 𝑠 
, 𝑡 ≤ 𝑠

 ≥

 
 
 

 
 𝛾 + 4𝛿

4(𝛾 + 𝛿)
, 𝑠 ≤ 𝑡

𝛼 + 4𝛽

4(𝛼 + 𝛽)
, 𝑡 ≤ 𝑠

  

So              
𝐺 𝑡,𝑠 

𝐺 𝑠,𝑠 
≥ 𝑀,

1

4
≤ 𝑡 ≤ 3/4 

 

Hence, if 𝑢 ∈ 𝑘 

min
1
4
≤𝑡≤3/4

𝑅𝑢(𝑡) = min
1
4
≤𝑡≤3/4

 𝐺 𝑡, 𝑠 𝑟 𝑠 𝑓 𝑢 𝑠  𝑑𝑠
1

0

 



 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

International Research Journal of Mathematics, Engineering and IT (IRJMEIT) 

68 | P a g e  

                  ≥ 𝑀 𝐺 𝑠, 𝑠 𝑟 𝑠 𝑓(𝑢(𝑠))𝑑𝑠
1

0

 

≥ 𝑀 𝑅𝑢                        

 

Therefore,𝑅𝐾 ⊂  𝐾. Moverover ,it is easy to see that  𝑅: 𝐾 → 𝐾  is completely continuous . 

Now, since 𝑓0 = 0, we may choose 𝐴1 > 0  so that 𝑓 𝑢 ≤ 𝜂𝑢, 𝑓𝑜𝑟 0 < 𝑢 ≤ 𝐴1, where 𝜂 > 0 

satisfies  η G s, s 
1

0
r s ds ≤ 1 ................... (2.9) 

Thus if 𝑢 ∈ 𝐾 and  𝑢 = 𝐴1, then from (2.7) and (2.9) 

𝑅𝑢 𝑡 ≤  𝐺 𝑠, 𝑠 
1

0
𝑟 𝑠 𝑓 𝑢 𝑠  𝑑𝑠 ≤  𝑢 , 0 ≤ 𝑡 ≤ 1 ................. (2.10) 

Now, if we consider Ω1 ≔  𝑢 ∈ 𝐸:  𝑢 < 𝐴1 .............................. (2.11) 

Then now (2.10) shows that  𝑅𝑢 ≤  𝑢 , 𝑢 ∈ 𝐾𝑛𝜕 ∩1 .   Further, since 𝑓∞ = ∞, there exists 

𝐴2 > 0 such that 𝑓 𝑢 ≥ 𝜇𝑢, 𝑢 ≥ 𝐴2 where 𝜇 > 0 is chosen so 

that    𝑀𝜇  𝐾 1
2  , 𝑠 𝑟 𝑠 𝑑𝑠 ≥ 1.

3
4 

1
4 

........... (2.13) 

Let consider 𝐴3 ≔ 𝑀𝑎𝑥  2𝐴1,
𝐴2

𝑀   and Ω2 ≔  𝑢 ∈ 𝐸:  𝑢 < 𝐴2 .Then 𝑢 ∈ 𝐾 and  𝑢 = 𝐴2 

implies min1
4 <𝑡<3

4 
𝑢 𝑡 ≥ 𝑀 𝑢 > 𝐴2 and so 

𝑅𝑢 1
2  =  𝐺 1

2 , 𝑠 
1

0

𝑟 𝑠 𝑓 𝑢 𝑠  𝑑 ≥  𝐺 1
2 , 𝑠 

3
4 

1
4 

𝑟 𝑠 𝑓 𝑢 𝑠  𝑑𝑠 

Hence, 𝑅𝑢 ≥  𝑢  for 𝑢 ∈ 𝐾𝑛𝜕Ω2  

Therefore, by the first part of the fixed point theorem, it follows that 𝑅 has a fixed point in 𝐾𝑛Ω2
     

/Ω1
     such that 𝐴1 ≤  𝑢 ≤ 𝐴3.Further, since 𝐺 𝑡, 𝑠 > 0, it follows that 𝑢 𝑡 > 0  for 0 < 𝑡 < 1. 

Therefore, this completes the super linear part of the theorem. 

Sublinear case: Suppose next that 𝑓0 = ∞ and 𝑓∞ = 0. 

We first choose 𝐴1 > 0 such that 𝑓 𝑢 ≥ 𝜇𝑀 for 0 < 𝑢 ≤ 𝐴1 where  

𝜇𝑀  𝐺 1
2 , 𝑠 𝑟 𝑠 𝑑𝑠 ≥ 1

3
4 

1
4 

 ................... (2.14) where 𝑀 is as in the first part of the proof. 
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Then for 𝑢 ∈ 𝐾 and  𝑢 = 𝐴1 we have 𝑅𝑢 1
2  =  𝐺 1

2 , 𝑠 
1

0
𝑟 𝑠 𝑓 𝑢 𝑠  𝑑𝑠 ≥

 𝐺 1
2 , 𝑠 

3
4 

1
4 

𝑟 𝑠 𝑓 𝑢 𝑠  𝑑𝑠 

                                                              ≥ 𝜇  𝐺 1
2 , 𝑠 

3
4 

1
4 

𝑟 𝑠 𝑢(𝑠)𝑑𝑠 

                                         ≥ 𝜇𝑀 𝑢  𝐺 1
2 , 𝑠 

3
4 

1
4 

𝑟 𝑠 𝑑𝑠 ≥  𝑢  , by (2.14) 

Thus ,we may let Ω1 ≔  𝑢𝜖𝐸:  𝑢 < 𝐴1  so that  𝑅𝑢 ≥  𝑢  for 𝑢 ∈ 𝐾 ∩ 𝜕Ω1. 

Now, since 𝑓∞ = 0,there exists 𝐴3 > 0 so that 𝑓 𝑢 ≤ 𝜆𝑢 for 𝑢 ≥ 𝐴3 where 𝜆 > 0 satisfies   

                  𝜆  𝐺 𝑠, 𝑠 
1

0
𝑟 𝑠 𝑑𝑠 ≤ 1   ....................... (2.15) 

We consider two cases. 

Case 1: Suppose 𝑓 is bounded, say 𝑓 𝑢 ≤ 𝑁, for all 𝑢 ∈  0,∞  

In this case choose 𝐴2: = 𝑀𝑎𝑥  2𝐴1, 𝑁  𝐺 𝑠, 𝑠 
1

0
𝑟 𝑠 𝑑𝑠  so that for 𝑢 ∈ 𝐾 with  𝑢 = 𝐴2.We 

have 𝑅𝑢 𝑡 =  𝐺 𝑡, 𝑠 𝑟 𝑠 𝑓 𝑢(𝑠) 
1

0
𝑑𝑠 ≤ 𝑁  𝐺 𝑠, 𝑠 𝑟 𝑠 𝑓 𝑢(𝑠) 

1

0
𝑑𝑠 ≤ 𝐴2 

and therefore  𝑅𝑢 ≤  𝑢 . 

Case 2:If 𝑓 is unbounded ,then let 𝐴3 > 𝑚𝑎𝑥 2𝐴1, 𝐴2  and such that 

 𝑓 𝑢 ≤ 𝑓 𝐴2  ,for  0 < 𝑢 ≤ 𝐴2 since 𝑓 is bounded . 

Then for 𝑢 ∈ 𝐾 and  𝑢 = 𝐴2,we have 𝑅𝑢 𝑡 =  𝐺 𝑡, 𝑠 
1

0
𝑟 𝑠 𝑓 𝑢 𝑠  𝑑𝑠 

                                                     ≤  𝐺 𝑠, 𝑠 
1

0
𝑟 𝑠 𝑓 𝑢 𝑠  𝑑𝑠 

                 ≤  𝐺 𝑠, 𝑠 
1

0

𝑟 𝑠 𝑓 𝐴2 𝑑𝑠 

                                               ≤ 𝜆𝐴2  𝐺 𝑠, 𝑠 
1

0
𝑟 𝑠 𝑑𝑠 ≤ 𝐴2 =  𝑢  

Therefore, in either case we may put; 

Ω2 ≔  𝑢𝜖𝐸:  𝑢 < 𝐴2 ,  and for 𝑢 ∈ 𝐾 ∩ 𝜕Ω2 ,  we have  𝑅𝑢 ≤  𝑢 .   By the second part of 

the fixed point theorem it follows that boundary value problem (BVP)  1.1    and  1.2   has 

positive solution and this completes the proof of the theorem . 
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4. Conclusion  

Therefore our conclusion is that the fixed point theorem is a basic criterion for the existence of 

positive solution of second order ordinary differential equation in Banach space .The main result 

of this paper is to investigate at least one positive solution in the case of sup linear and sub linear 

cases. Hence in both cases, existence of positive solution for second order ordinary differential 

equation has been granted. 
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