
  

 

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

International Research Journal of Mathematics, Engineering and IT (IRJMEIT) 

1 | P a g e  

 

 

International Research Journal of  Mathematics, Engineering and IT 
Vol. 2, Issue 11,  Nov 2015           IF- 2.868                 ISSN: (2349-0322) 

© Associated   Asia   Research   Foundation   (AARF)  
Website: www.aarf.asia Email : editor@aarf.asia , editoraarf@gmail.com  

 

AXIAL VIBRATION OF A CANTILEVER BEAM WITH A TIP MASS 

Oktay Demirdag 

Civil Engineering Department, Pamukkale University, Turkey 

 

ABSTRACT 

In this study free axial vibration of a cantilever beam with a tip mass is analyzed. The 

boundary conditions are written for the fixed end and the end with the tip mass after the 

differential equation of motion is solved by separation of variables method. The frequency 

values for the first three vibration modes of the beam are obtained for various values of 

concentrated mass and presented in the tables. The frequency values for the concentrated 

mass values of zero are also compared with the ones of cantilever beam without tip mass and 

nearly the exact values are obtained with negligible error percentages. 
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1. Introduction 

In practice, the representation of a beam by a discrete model is an idealized model; 

however, in fact, beams have continuously distributed mass and elasticity. Mostly, especially 

for the axially vibration, beams are modeled as continuous systems having infinite number of 

degreed of freedom [1-10]. 

In this study, the free vibration analysis of a uniform axially vibrating cantilever beam 

with a tip mass is made. The differential equation of motion of the axially vibrating beam is 

solved by separation of variables method [11] and the displacement function is obtained. The 

boundary conditions are written for the fixed end and the tip mass. The natural frequencies 

for the first three modes are obtained for the various values of the tip mass. The results 

obtained for the tip mass value of zero are compared with the frequency values of the 

cantilever beam without a tip mass. The axially vibrating beam considered in the study is 

assumed to be homogeneous and isotropic. 
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2. Solution of Equation of Motion for an Axıally Vıbratıng Beam 

An axially vibrating beam, given in Figure.1, with the distributed mass m, the length 

L, the modulus of elasticity E, the cross-section area A and the axial rigidity AE has a 

dimensional differential equation of motion for free vibration as [12] 

 

m, L, AE 

u(x,t) 

x 

 

Figure 1: An Axially Vibrating Beam 

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 −
𝑚

𝐴𝐸

𝜕2𝑢 𝑥,𝑡 

𝜕𝑡2 = 0         

(1) 

where u(x,t) is the displacement function of the beam in terms of both displacement x and 

time t. Application of the separation of variables method to Eq. (1) as in the form of Eq. (2) is 

commonly used in vibration analysis of beams. 

𝑢(𝑥, 𝑡) = 𝑋 𝑥 . 𝑇 𝑡 = 𝑋 𝑥 . [𝐴. sin 𝑡 + 𝐵. cos 𝑡 ]      

(2) 

In Eq. (2), X(x) is the eigenfunction named as shape function, T(t) is time function,  is the 

eigenvalue of the solution named as natural frequency and A, B are constants. 

The derivatives used in Eq. (1) can, therefore, be written as 


2𝑢 𝑥,𝑡 

𝑥2 = 𝑢′′  𝑥, 𝑡 = 𝑋′′  𝑥 .  𝐴. sin 𝑡 + 𝐵. cos 𝑡  = 𝑋′′  𝑥 .𝑇 𝑡     

(3) 

2𝑢 𝑥,𝑡 

𝑡2 = 𝑢  𝑥, 𝑡 = 𝑋 𝑥 . (−2) 𝐴. sin 𝑡 + 𝐵. cos 𝑡  = −2 . 𝑋 𝑥 . 𝑇 𝑡     

(4) 

where (
//
) and (¨) denote the second order derivative due to x and t, respectively. Substitution 

of Eq. (3) and Eq. (4) in Eq. (1) gives the governing equation of motion in the form as 

 𝑋′′  𝑥 . 𝑇 𝑡 +
𝑚2

AE
𝑋 𝑥 .𝑇 𝑡 = 0    𝑋′′ 𝑥 +

𝑚2

AE
𝑋 𝑥 = 0     0 ≤ 𝑥 ≤ 𝐿    

(5) 

for   𝛼2 =
𝑚2

AE
  𝑋′′  𝑥 + 𝛼2𝑋 𝑥 = 0       

(6) 
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The characteristic equation and the solution of Eq. (6) is given as follows as D being d/dz: 

 

𝐷2 + 𝛼2 = 0   →     𝐷1,2 = ±𝑖𝛼        (7) 

𝑋(𝑥) = 𝐶1 . sin 𝛼𝑥 + 𝐶2. cos 𝛼𝑥         (8) 

Eq. (8) gives the shape function of the axially vibrating beam due to the displacement 

variable, x. Therefore, from Eq. (2), the displacement function of the axially vibrating beam 

has the form of Eq. (9). 

 𝑢 𝑥, 𝑡 = 𝑋 𝑥 . 𝑇 𝑡 =  𝐶1. 𝑠𝑖𝑛 𝛼𝑥 + 𝐶2 . 𝑐𝑜𝑠 𝛼𝑥  . 𝑇(𝑡)      

(9) 

 

3. Boundary Conditions 

 

m, L, AE x=0 x=L 

M 

 

Figure 2: Axially Vibrating a Cantilever Beam with a Tip Mass 

Two boundary conditions have to be written for the cantilever beam with a tip mass in 

Figure.2 since two integration constants (C1, C2) are obtained in the solution of second order 

differential equation of motion. The boundary conditions written for the left and the right 

ends of axially vibrating beam are given, respectively, as [13] 

for x=0  𝑢 𝑥 = 0, 𝑡 = 0      

 (10) 

for x=L 𝑁 𝑥 = 𝐿, 𝑡 = 𝐴𝐸𝑢′ 𝑥 = 𝐿, 𝑡 = −𝑀. 𝑢 (𝑥 = 𝐿, 𝑡)  

 (11) 

where M is the tip mass value and N(x,t) is the axial force. If Eq. (9) and its derivative are 

substituted into Eq. (10) and Eq. (11) one gets the following relation between the coefficient 

matrix and the integration constants. 

  𝑘 .  𝐶 = 0;      ∝. cos ∝ 𝐿 −∝𝑀
2 . sin(∝ 𝐿) .  𝐶1 =  0    

 (12) 

 𝑘 =  ∝. cos ∝ 𝐿 −∝𝑀
2 . sin(∝ 𝐿) = 0     

 (13) 
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where ∝𝑀
2 =

𝑀.𝜔2

𝐴𝐸
. For non-trivial solution equating the determinant of the coefficient matrix 

of Eq. (12) to zero, as in Eq. (13), will give the eigenfrequencies of the axially vibrating 

cantilever beam with a tip mass. These frequencies are computed by a program written by the 

author considering the secant method [14]. 

4. Numerical Analysis 

The first three natural frequencies of the axially vibrating cantilever beam with a tip 

mass are calculated for M values of 0, 10
-10

, 10
-9

, 10
-8

, 10
-6

, 10
-4

, 10
-2

, 10
-1

, 10
0
, 10

1
 and 10

2
, 

the beam length of L=1 m. and the modulus of elasticity of E=2100000 kg/cm
2
. IPB-100, 

IPB-300 and IPB-600 profiles are used for numerical analysis with the mechanical properties 

given in Table 1 where h is height, G is weight per length, A is cross-section area and AE is 

axial rigidity of the corresponding profile. The distributed mass of the beam m is calculated 

from G/g as g being the acceleration of gravity with the value of 981 cm/sn
2
. 

 

 

Table 1: The Mechanical Properties of the Profiles Used in This Study 

Profile 

h 

(cm) 

G 

(kg/cm) 

A 

(cm
2
) 

AE 

(kg) 

IPB100 10 0.081 10.3 21630000 

IPB300 30 0.422 53.8 112980000 

IPB600 60 1.22 156 327600000 

  

The frequency values computed due to different values of the tip mass are presented 

in Table 2, Table 3 and Table 4 for, respectively, IPB-100, IPB-300 and IPB-600. The 

frequency values obtained for M=0 are compared with the exact frequency values obtained 

from the frequency equation of cantilever beam without a tip mass in the first row. 
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Table 2: Frequencies Computed for Different Values of the Tip Mass for IPB-100 

  1 2 3 

Exact Frequencies 

 for Cantilever Beam 
𝝎𝒊 =

 𝟐𝒏𝒊 − 𝟏 

𝟐

𝝅

𝑳
 

𝑨𝑬

𝒎
 8039.7053 24119.1160 40198.5266 

M 

0 8039.7053 24119.1160 40198.5266 

10
-10 8039.7052 24119.1157 40198.5261 

10
-9

 8039.7044 24119.1131 40198.5218 

10
-8 8039.6956 24119.0868 40198.4779 

10
-6

 8039 24117 40194 

10
-4 7944 23831 39719 

10
-2

 4099 17306 32815 

10
-1 1451 16213 32226 

10
0
 465 16093 32166 

10
1 148 16081 32160 

10
2
 47 16080 32159 

 

Table 3: Frequencies Computed for Different Values of the Tip Mass for IPB-300 

  1 2 3 

Exact Frequencies 

 for Cantilever Beam 
𝝎𝒊 =

 𝟐𝒏𝒊 − 𝟏 

𝟐

𝝅

𝑳
 

𝑨𝑬

𝒎
 8050.0567 24150.1702 40250.2836 

M 

0 8050.0567 24150.1702 40250.2836 

10
-10 8050.0567 24150.1701 40250.2835 

10
-9

 8050.0565 24150.1696 40250.2827 

10
-8 8050.0549 24150.1646 40250.2743 

10
-6

 8050 24150 40250 

10
-4 8032 24095 40157 

10
-2

 6567 20333 35076 

10
-1 3139 16770 32547 
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10
0
 1056 16170 32236 

10
1 336 16108 32204 

10
2
 107 16770 32201 

 

 

Table 4: Frequencies Computed for Different Values of the Tip Mass for IPB-600 

  1 2 3 

Exact Frequencies 

 for Cantilever Beam 
𝝎𝒊 =

 𝟐𝒏𝒊 − 𝟏 

𝟐

𝝅

𝑳
 

𝑨𝑬

𝒎
 8062.0672 24186.2015 40310.3358 

M 

0 8062.0672 24186.2015 40310.3358 

10
-10 8062.0672 24186.2015 40310.3358 

10
-9

 8062.0671 24186.2013 40310.3355 

10
-8 8062.0665 24186.1996 40310.3329 

10
-6

 8062 24186 40310 

10
-4 8056 24167 40278 

10
-2

 7465 22451 37580 

10
-1 4769 17884 33223 

10
0
 1774 16325 32350 

10
1 572 16145 32259 

10
2
 181 16127 32250 

 

5. Conclusions 

In this study free axial vibration of a cantilever beam with a tip mass is made. The 

natural frequency values are obtained for different values of the tip mass and presented in 

tables. It can be seen from Tables 2, 3 and 4 that as the tip mass values increase from zero 

through a value of 10
-6

 for all profiles considered in this study the frequency values gently 

decrease, however, after the mentioned values the frequency values begin to decrease 

dramatically and rapidly. Increasing the height of the beam section causes an increase in 

frequency values. 
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