APPLICATION OF NORMAL PROBABILITY DISTRIBUTION IN ESTIMATING ANNUAL MAXIMUM AND MINIMUM TEMPERATURE IN THE CONTEXT OF ASSAM

Dhritikesh Chakrabarty Department of Statistics Handique Girls' College Guwahati – 781001, Assam, India and Mahananda Gohain Department of Statistics Purbanchal College,. Silapathar Silapathar, Dhemaji – 787059, Assam, India

ABSTRACT

The normal probability distribution, also known as Gaussian distribution, was discovered by a German mathematician Carl Friedrich Gauss in the year 1809. Some authors credit this discovery to a French mathematician Abraham De Moivre who published a paper in 1738 that showed the normal distribution as an approximation to the binomial distribution discovered by James Bernoulli. The normal probability distribution plays the key role not only in the development of most of the theories in statistics but also in the analysis of data associated to many real phenomena. There are innumerable phenomena where one can think of applying the theory of normal probability distribution to analyze the phenomena based on data collected from them. In the case of temperature at a location, it is a reality that temperature is a variable which changes continuously over time.. The temperature at a location corresponds, in a year, to one maximum value and one minimum value that ought to be constants if the pattern of this change is not influenced by some unnatural factor/factors. There is scope of applying the theory of normal probability distribution in estimating the annual maximum and minimum temperature at a location. In this study a method of has been framed of for estimating the annual maximum and minimum temperature at a location by the application of the area property of normal probability distribution. The method has been applied in estimating the annual maximum and minimum of temperature in the context of Assam.

Key Words:

Normal probability distribution, temperature, maximum, minimum, probabilistic estimation.

INTRODUCTION

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

The normal probability distribution, also known as Gaussian distribution, was discovered by a

German mathematician *Carl Friedrich Gauss 1* in the year 1809. Some authors credit this discovery to

a French mathematician *Abraham De Moivre2* who published a paper in 1738 that showed the normal

distribution as an approximation to the binomial distribution discovered by James Bernoulli

(Bernoulli 3, Chakrabarty 4-6, De Moivre 2,7, Kendall and Stuart 8, Walker and Lev 9, Walker 10,

Brye 11, Hazewinkel 12, Marsagilia 13, Stigler 14, Weisstein 15 et al). The normal probability

distribution plays the key role in the theory of statistics as well as in the application of statistics. There are innumerable situations (and / or problems) where one can think of applying the theory of normal probability distribution to handle the situations (and / or to search for their solutions).

The components of the climate (for example, average temperature, maximum temperature, minimum temperature, humidity etc.) at a location/region have been changing continuously over time. The change in a component occurs basically due to the following two broad causes:

1. Assignable or controllable cause (or causes).

2. Chance cause.

The change in a component will be significant or equivalently effective or equivalently

countable if and only if it occurs due to both the causes. On the other hand, the change in the component will be insignificant or equivalently ineffective or equivalently negligible if and only if it

occurs due to chance cause only. There is necessity of determining whether the change occurs due to

both the causes or due to the chance cause only because, the task of controlling the change arises only when the change occurs due to assignable cause (or causes). The temperature in a location corresponds, in one year, to one maximum value and one minimum value that ought to be constants if the nature of the location is not influenced by some unnatural factor/factors.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

There is necessity of a study on the natural maximum and of the natural minimum of temperature. *Chakrabarty* 4-6 made a study on mean temperature, maximum temperature and minimum temperature in respect of forecasting. In this study, attempt has also been made to determine the natural maximum temperature and the natural minimum temperature in the context of Assam. Here, a study has been made to search for some method of determining the natural maximum and the natural minimum of temperature at a location by the application of the area property of normal probability distribution. The method has been applied in determining the natural maximum and the natural maximum temperature and the natural minimum of temperature in the context of Assam. Once the values of the natural maximum temperature and the natural minimum temperature in a location are known, it would be possible to know if the temperature of the location has been influenced by some unnatural factor/factors by analyzing the past and present scenario in respect of the temperature of the location.

2. GAUSSIAN DISCOVERY

The probability density function of the **Normal Probability Distribution** discovered by *Gauss* is described by the probability density function

$$f(x:\mu,\sigma) = \{ \sigma(2\pi) \frac{1}{2} - 1 \cdot exp \left[-\frac{1}{2} \left\{ \frac{(x-\mu)}{\sigma} \right\}^2 \right],$$

(2.1)

 $-\infty < x < \infty$, $-\infty < \mu < \infty$, $0 < \sigma < \infty$.

Here, (i) X is the associated normal variable,

(ii) $\mu \& \sigma$ are the two parameters of the distribution

And (iii) mean of $X = \mu$ & standard deviation of $X = \sigma$.

Note: If $\mu = 0 \& \sigma = 1$,

the density is standardized and X then becomes a standard normal variable.

Area Property of Normal Distribution

If $X \sim N (\mu, \sigma)$, then (i) $P(\mu - 1.96 \sigma < X < \mu - 1.96 \sigma) = 0.95$,

(2.2)

(ii)
$$P(\mu - 2.58 \sigma < X < \mu - 2.58 \sigma) = 0.99$$

(2.3)

& (iii)
$$P(\mu - 3\sigma < X < \mu - 3\sigma) = 0.9973$$
.

(2.4)

If *X* is a standard normal variable, then

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

(i)
$$P(-1.96 < X < 1.96) = 0.95$$
,

(2.5)

(ii)
$$P(-2.58 < X < 2.58) = 0.99$$

(2.6)

& (iii)
$$P(-3 < X < 3) = 0.9973$$

(2.7)

3. METHOD OF DETERMINATION OF NATURAL EXTREMA OF TEMPERATURE

Let *Y* be the annual extremum (that is maximum or minimum) of temperature at a location and *Yi* (*i* = 1, 2, 3,) be the observation s on the annual extremum temperature observed at a location in the year *i*. The true/actual value of *Y* is unique, say $\mu(Y)$. But the observed values are different which should be equal to $\mu(Y)$.

The variation in the observed values occur due to two types of causes/errors namely+

1. Assignable Cause(s) that is (are) avoidable / controllable

And

2. Chance Cause/Error that is unavoidable / uncontrollable

The values of *Yi* should be constant if there exists no cause of variation in *Yi* over years. However, chance cause (random cause) of variation exists always. Thus if no assignable cause of variation exists in *Yi* over year, we have

 $Yi = \mu(Y) + \varepsilon i$

(3.1)

where $\mu(Y)$ = the true value of *Yi* at the location in the year *i*

& εi = the amount of chance error associated to $Yi(i = 1, 2, 3, \dots)$.

The variable Y, in this case, satisfies the mathematical model

$$Y = \mu(Y) + \varepsilon$$

(3.2)

where $\mu(Y)$ = the true value of *Y*

& εi = the variable representing the chance error associated to *Y*.

It is to be noted that

(1) *Y*1 , *Y*2 ,, *Yi* , , *Yn* are known,

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

(2) $\mu(Y)$, $\varepsilon 1$, $\varepsilon 2$, ..., εn are unknown.

& (3) the number of linear equations in (3.1) is *n* with n + 1 unknowns

implying that the equations are not solvable mathematically.

Following assumptions, which are reasonable, are made on the error component *ɛi* :

- (1) $\varepsilon 1$, $\varepsilon 2$,, εn are unknown values of the variables ε .
- (2) The values ε1, ε2,, εn are very small relative to the respective values X1, X2,, Xn.
- (3) The variable ε assumes both positive and negative values.

(4)
$$P(-a - da < \varepsilon < -a) = P(a < \varepsilon < a + da)$$
 for every real *a*.

(5)
$$P(a < \varepsilon < a + da) > P(b < \varepsilon < b + db)$$

&
$$P(-a-da < \varepsilon < -a) < P(-b-db < \varepsilon < -b)$$

for every real positive a < b.

- (6) The facts (3), (4) & (5) together imply that ε obeys the normal probability law.
- (7) Sum of all possible values of each ε is 0 (zero) which together with the fact (6) implies that $E(\varepsilon) = 0$.
- (8) Standard deviation of ε is unknown and small, say $\sigma \varepsilon$.
- (9) The facts (6), (7) & (8) together imply that ε obeys the normal probability law with mean (expectation) 0 & standard deviation $\sigma\varepsilon$. Thus

 $\varepsilon \sim N\!(0\,,\,\sigma\varepsilon)$

Now, under the assumption number (9),

 $Y - \mu \sim N(0, \sigma\varepsilon)$ or equivalently $Y \sim N(\mu, \sigma\varepsilon)$.

Also by the area property mentioned above,

(i)
$$P(\mu - 1.96 \sigma \varepsilon < Y < \mu - 1.96 \sigma \varepsilon) = 0.95$$
,

(3.2)

(ii)
$$P (\mu - 2.58 \sigma \varepsilon < Y < \mu - 2.58 \sigma \varepsilon) = 0.99$$

(3.3)

& (iii)
$$P(\mu - 3.00 \sigma \varepsilon < Y < \mu - 3.00 \sigma \varepsilon) = 0.9973$$

(3.4)

(iii) means that out of 10000 observations, maximum 27 observations fall outside the interval

$$(\mu - 3.00 \sigma \varepsilon, \mu + 3.00 \sigma \varepsilon)$$

(3.5)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

i.e. out of 100 observations maximum one observation will fall outside the interval provided the

change in *Y* does not occur due to any assignable cause but occurs due to chance cause only or

equivalently the change in *Y* is not significant. This principle/method can be applied to determine whether the change in *Y* over year is significant.

Note The set of observations

*Y*1 , *Y*2 ,,*Yi* , , *Yn*

Constitute the population for the period from the year '1' to the year 'n'.

Thus, μ = Arithmetic Mean of(Y1, Y2, ..., Yi, ..., Yn)

(3.6)

and $\sigma \varepsilon^2$ = Variance of (Y1, Y2,, Yi,, Yn)

(3.7)

Again due to the same logic, the intervals

(i) $(\mu - 1.96 \sigma \varepsilon, \mu + 1.96 \sigma \varepsilon)$,

(3.8)

(ii) $(\mu - 2.58 \sigma \varepsilon, \mu + 2.58 \sigma \varepsilon)$

(3.9)

& (iii) $(-3.00 \sigma \varepsilon, \mu + 3.00 \sigma \varepsilon)$

(3.10)

are respectively 95%, 99% & 99.73% confidence intervals of Y.

Now, $P\{(Yi - \mu) / \sigma \varepsilon < 3\} = 0.9973$

implies that a random value of Y goes outside the interval

$$\mu - 3\sigma\varepsilon < Y \, i < \mu + 3\sigma\varepsilon$$

(3.11)

is 0.0027 which is very small. This means, it is near certain that Y falls inside the interval which in

other words means that it is natural that Y falls inside the interval. For this reason, this

interval is

termed as the natural interval of Y (Shewhart16, Grant17).

Thus in order to determine the natural interval (more specifically natural maximum and natural

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

minimum) of *Y*, it is required to determine μ and $\sigma\varepsilon$ which can be obtained by applying the relation (3.7) and (3.7) respectively.

4. DETERMINATION OF NATURAL EXTREMA OF TEMPERATURE IN THE CONTEXT

OF ASSAM

The objectives in the study are

(1) to investigate whether the changes in temperature, in Assam, that are occurred is

due to some unnatural cause or causes

and (2) to determine the natural maximum and the natural minimum of Temperature in the context of

Assam.

To achieve the objectives, data on

(1) the maximum temperature

and (2) the minimum temperature at the locations covering Assam are needed.

Indian Meteorological Department has 41 locations (called stations in meteorological terminology),

out of which 5 locations are situated in Assam more or less covering the state which are Dibrugarh,

Dhubri, Guwahati, Tezpur and Silchar.

In the collection of data from these stations we had been supplied the prior information that the

daily data suffer from inconsistency (undetectable and immeasurable) while monthly data are almost

free from it. For this reasons, the raw data have been converted to monthly data. Thus, the classified

data deals with

(1) the highest maximum temperature occurred in month i.e. monthly maximum

temperature

and (2) the lowest minimum temperature occurred in monthly i.e. monthly mimimum temperature.

5. ANALYSIS OF DATA (Computations)

Numerical computations have been done in the following broad steps:

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: <u>www.aarf.asia</u>. Email: <u>editoraarf@gmail.com</u>, <u>editor@aarf.asia</u>

Step – **5.1:** In the first step,

(1) the highest maximum temperature

and (2) the lowest minimum temperature

occurred in each of the 12 months at each of the 5 stations have been identified and collected.

Thus,

the collected data deal with

(1) the monthly maximum temperature

and (2) the monthly minimum temperature

for each of the 5 stations.

Step – 5.2: In the second step,

(1) the highest maximum temperature

and (2) the lowest minimum temperature

occurred in each year of each of the 5 stations have been identified. Thus, the identified data deal with

(1) the annual maximum temperature

and (2) the annual minimum temperature

for each of the 5 stations.

Step – **5.3:** In the third step, the two parameters namely mean μ and standard deviation $\sigma \varepsilon$ have been

estimated for each of the characteristics

(1) the annual maximum temperature and (2) the annual minimum temperature for each of the 5 stations.

The parameters μ and $\sigma\varepsilon$ for a specified station are nothing but the population mean and population variance respectively of the specified characteristic. Thus the estimates of μ and $\sigma\varepsilon$ obtained are nothing but the estimates of the corresponding characteristics and the estimates of the standard deviations of the corresponding estimates. The estimated values of annual maximum temperature and annual minimum temperature with the respective estimated values of the corresponding standard deviation have been presented in **Table – 6.1**.

Step – **5.4:** In the next step, 95 % confidence interval of the two characteristics mentioned in **Step** –

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: <u>www.aarf.asia</u>. Email: <u>editoraarf@gmail.com</u>, <u>editor@aarf.asia</u>

5.3 for each of the 5 stations have been computed. The values of them have been presented in **Table–6.2**.

Step – 5.5: In the next step, 99 % confidence interval of the two characteristics ment ioned in

Step -5.3 for each of the 5 stations have been computed. The values of them have been

presented in Table-6.3.

Step – 5.6: In the next step, natural interval of the two characteristics mentioned in **Step – 5.3** for

each of the 5 stations have been computed. The values of them have been presented in **Table** -6.4.

Step – **5.7:** In the next step, it has been examined whether the observed values of each of the two

characteristics

(1) the annual maximum temperature

and (2) the annual minimum temperature

for each of the 5 stations lie within the corresponding interval obtained in **Step** – **5.6.** The findings

have been presented in **Table – 6.5**

6. PRESENTATION OF RESULTS

 Table – 6.1

 (Mean of Annual Maximum Temperature and Annual Minimum Temperature with Standard Deviation)

Serial	Name	Estimated	Estimated	Estimated	Estimated
NT		Value of	Value of	Value of	Value of
No.	Of	Annual	Standard	Annual	Standard
	Station	Maximum	Deviation of	Minimum	Deviation of
		temperature (in	Annual	temperature	Annual
		Degree Celsius)	Maximum	(in Degree	Minimum
			Temperature	Celsius)	Temperature
			(in Degree		(in Degree
			Celsius)		Celsius)
1	DHUBRI	36 3875	1 1667	8 7583	1 1565
1	DHODM	56.5675	1.1007	0.7505	1.1505
2	DIBRUGARH	36.7026	0.8788	5.7395	1.1984

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: <u>www.aarf.asia</u>. Email: <u>editoraarf@gmail.com</u>, <u>editor@aarf.asia</u>

3	GUWAHATI	37.1857	1.1340	7.3429	1.2483
4	SILCHAR	37.2000	1.3149	8.6138	0.9209
5	TEZPUR	36.8775	0.9804	8.6400	0.8003

Table – 6.2

(95 % Confidence Interval of Annual Maximum Temperature and Annual Minimum Temperature)

.

Serial No.	Name Of Station	Lower Limit of Annual Maximum temperature (in Degree Celsius)	Upper Limit of Annual Maximum Temperature (in Degree Celsius)	Lower Limit of Annual Minimum temperature (in Degree Celsius)	Upper Limit of Annual Minimum Temperature (in Degree Celsius)
1	DHUBRI	34.1008	38.6742	6.4916	11.0250
2	DIBRUGARH	34.9802	38.4251	3.3906	8.0884
3	GUWAHATI	34.9631	39.4083	4.8962	9.7896
4	SILCHAR	34.6228	39.7772	6.8088	10.4188
5	TEZPUR	34.9559	38.7991	7.0714	10.2086

Table – 6.3

(99 % Confidence Interval of Annual Maximum Temperature and Annual Minimum Temperature)

Serial	Name	Lower Limit of	Upper Limit	Lower Limit of	Upper Limit
No.	Of Station	Annual Maximum temperature (in	of Annual Maximum Temperature	Annual Minimum temperature	of Annual Minimum Temperature
		Degree Celsius)	(in Degree Celsius)	(in Degree Celsius)	(in Degree Celsius)
1	DHUBRI	33.3774	39.3976	5.7745	11.7421

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: <u>www.aarf.asia</u>. Email: <u>editoraarf@gmail.com</u>, <u>editor@aarf.asia</u>

2	DIBRUGARH	34.4353	38.9699	2.6476	8.8314
3	GUWAHATI	34.2599	40.1114	4.1223	10.5635
4	SILCHAR	33.8076	40.5924	6.2379	10.9897
5	TEZPUR	34.3481	39.4069	6.5752	10.7048

Table – 6.4

(Natural Interval of Annual Maximum Temperature and Annual Minimum Temperature)

Serial No.	Name Of Station	Lower Limit of Annual Maximum temperature (in Degree Celsius)	Upper Limit of Annual Maximum Temperature (in Degree Celsius)	Lower Limit of Annual Minimum temperature (in Degree Celsius)	Upper Limit of Annual Minimum Temperature (in Degree Celsius)
1	DHUBRI	32.8874	39.8876	5.2888	12.2278
2	DIBRUGARH	34.0662	39.3390	2.1443	9.3347
3	GUWAHATI	33.7837	40.5877	3.5980	11.0878
4	SILCHAR	33.2553	41.1447	5.8511	11.3765
5	TEZPUR	33.9363	39.8187	6.2391	11.0409

Table – 6.5

(Number of Annual Maximum Temperature and Annual Minimum Temperature falling out side of the Corresponding Natural Intervals)

Serial	Name	Number of Annual Maximum	Number of Annual Minimum
No.	Of	Temperature falling out side of the Corresponding Natural	Temperature falling out side of the Corresponding Natural
	Station	Interval given by Columns 3 & 4 of	Interval given by Columns 5 & 6 of
		Table-6.6	Table-6.6

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

1	DHUBRI	0	0
2	DIBRUGARH	1	0
3	GUWAHATI	0	0
4	SILCHAR	0	0
5	TEZPUR	0	0

7. DISCUSSION

The findings presented in **Table – 6.2** are the 95% confidence intervals confidence intervals of the two characteristics

(1) the annual maximum temperature and

(2) the annual minimum temperature

at the 5 stations under study. This means that the annual maximum temperature and the annual minimum temperature at each station will lie within the corresponding interval, shown

in **Table – 6.2,** in more than 95 years out of 100 years.

Similarly, the findings presented in **Table – 6.3** and in **Table – 6.4** can be interpreted. It has been found in **Table – 6.5** that almost all the observed values of each of the two characteristics for each of the 5 stations lie within the corresponding natural intervals obtained in **Step – 5.6**. This implies that there is no any significant cause that influences upon the changes in temperature in the context of Assam over years i.e. temperature in Assam has not been changing (since 1969) over years significantly. The changes occurred in them are due to the chance causes only.

The current study is based on the following assumptions:

(1) The facts and figures on the maximum temperature and the minimum temperature collected from the stations are free from mechanical errors (i.e. errors due to the machine / tool having unknown defect / defects and due to wrong handling of machine / tool).

(2) The facts and figures observed have been recorded correctly.

(3) Data on the characteristics mentioned in (1) are free from inconsistency.

(4) Chance errors associated to the observations in each of the characteristics are independently and identically distributed with normal probability distribution having zero means and a common unknown variance. Thus, the findings obtained in this study are

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

reasonable / meaningful if these assumptions hold good. If any or all of the assumptions is (are) not true, the findings obtained in the study are bound to be questionable.

The following results may be important to the meteorological and environmental scientists and for the society also:

(1) It is possible to apply the area property of normal distribution to know whether there exists any significant assignable cause in a region which forces the temperature in the region to be changed and to determine forecasted interval value on various characteristics of temperature with desired probability.

(2) There is no any significant cause that influence upon the changes in temperature, in Assam, over years i.e. temperature in Assam has not been changing (since 1969) over years significantly. The changes in temperature, occurred since 1969, are due to the chance causes only.

(3) The annual maximum temperature and the annual minimum temperature at each of the station under study will lie within the corresponding interval, shown in

(i) Table – 6.2, in more than 95 years out of 100 years,

(ii) Table – 6.3, in more than 99 years out of 100 years

and (iii) Table - 6.4, in more than 9973 years out of 10000 years.

8. REFERENCE

- 1. BryeWlodzimierz (1995): "The Normal Distribution : Characterizations with Applications" Springer Verlag, ISBN 0 387 97990 5.
- 2. Bernoulli J. (1713): "ArtsConjectandi", ImpensisThurmisiorumFratrumBasileae.
- Chakrabarty D. (2005a): "Probabilistic Forecasting of Time Series", Report ofPost Doctoral Research Project (2002 – 2005), submitted to the University Grants Commission, New Delhi.
- 4. *Chakrabarty D.* (2005*b*): "Probability: Link between the Classical Definition and the Empirical Definition ", *J. Ass. Sc. Soc.*, 45, June, 13-18.
- 5. *Chakrabarty D.* (2008) : "Bernoulli's Definition of Probability : Special Case of its Chakrabarty's Definition", *Int. J. Agricult. Stat. Sci.*, 4(1), 23 27.
- 6. *De Moivre Abraham* (1711): "*De MensuraSortis* (Latin Version)", PhilosophicalTransaction of the Royal Society.
- 7. *De Moivre Abraham* (1718): "*The Doctrine of Chances*", 1st Edition (2nd Edition in 1738 & 3rd Edition in 1756), ISBN 0 8218 2103 2.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

- 8. Federer W. T. (1955): "Experimental Design", Oxford & IBH Publication
- 9. Fisher R. A. and Yates F. (1938): "The Normal Probability Integral (VIIIA)", Statistical Tables for Biological, Agricultural and Medical Research, Sixth Edition (1982), Longman Group Limited, England, Page 17.
- 10. Grant E. L. (1972): "Statistical Quality Control", McGraw Hill.
- 11. *HazewinkelMichiel ed.* (2001) : "Normal Distribution ", *Encyclopedia ofMathematics*, Springer, ISBN 978 1 55608 010 4.
- 12. Kendall M. G. and Stuart A. (1977): "Advanced Theory of Statistics", Vol. 1 & 2, 4thEdition, New York, Hafner Press.
- 13. *Marsagilia George* (2004) : "Evaluating the Normal Distribution", *Journal of Statistical Software*, 11 (4), . http://www.jstatsoft.org/v11/i05/paper.
- 14. Shewhart W. A. (1931): "Economic Control of Quality of Manufactured Product", Van Nastrand.
- 15. *Stigler Stephen M.* (1982) : "A Modest Proposal : A New Standard for the Normal", *The American Statistician*, 36 (2), 137 138.
- 16. *Walker Helen M.* and *Lev J.* (1965): "*Statistical Inference*", Oxford & IBH Publishing Company.
- 17. *Walker Helen M.* (1985): "*De Moivre on the Law of Normal Probability*", In Smith, David Eugene. A Source Book in Mathematics, Dover, ISBN 0 486 64690 4.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: <u>www.aarf.asia</u>. Email: <u>editoraarf@gmail.com</u>, <u>editor@aarf.asia</u>