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ABSTRACT 

In this note I have explored a new generalization of Jacobsthal sequence using some arbitrary 

real numbers and derived relation among them. 

 

MSC 2010 Classification: 11B37, 11B83 

Key Word: Jacobsthal sequence, 

[1] Introduction: Jacobsthal Sequence [3] is defined as  
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  On setting a=b and c=d, the sequences  


 0ii
 and  



 0ii
  will coincide with each other. In 

particular on setting a=b=0 and c=d=1 we get the Jacobsthal sequence and setting a=b=2 and c=d=1 

we get the Jacobsthal -Lucas sequence. The first ten terms of the sequences defined above are : 

n αn βn 
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1 c d 

2 2b+d 2a+c 
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3 2a+c+2d 2b+2c+d 

4 4a+2b+4c+d 2a+4b+c+4d 

5 2a+8b+5c+6d 8a+2b+6c+5d 

6 12a+10b+8c+13d 10a+12b+13c+8d 

7 26a+16b+25c+18d 16a+26b+18c+25d 

8 36a+50b+44c+41d 50a+36b+41c+44d 

9 82a+88b+77c+94d 88a+82b+94c+77d 

If we express the members of the sequences  


 0ii
 and  



 0ii
 , when 0n   as  
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  We obtain the eight sequences  





0i

j

i
and 



 0i

j

i
 , (j = 1, 2, 3, 4). These eight sequences 

are related to each other and to the Jacobsthal numbers. These relations are shown here in the 

form of theorems. 

[2] Theorems On Related Sequences  

Theorem 1 :   
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Proof:  (a) This is obviously true if n = 0 and 1, since  
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  Assume this statement be true for n ≥1. Then   
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JJ                                             (By induction hypothesis) 

     
n

J                                       (By definition of Jacobsthal number) 

  Hence (a) is true for all n> 0 by mathematical induction. Similar proofs can be given for 

parts (b), (c) and (d). 

Theorem 2 :   If  n ≥ 0, then  
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Proof:  (a) Obviously this is true for n = 0 and 1. Let it be true for some integer n ≥ 2. Then,  
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Hence, by mathematical induction (a) is true for all n ≥ 0. Similarly we may have (b). Part (c) 

may have by addition of (a) and (b). 

Theorem 3: If n ≥ 0, then  
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Proof: (a) The statement is true for n = 0, 1, 2. Let be true for integer n ≥ 3. Then,   
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Hence, (a) is true for all n ≥ 0 by mathematical induction. Similarly we can have other proofs. 
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Using theorem (2) we may follow the result. 
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 Similar Proofs can be given for other parts. 
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(By definition of Jacobsthal number) 

       Hence, by mathematical induction the statement is true for all integer n ≥ 0. 

Theorem 7:   If n ≥ 2, then 
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Proof: (a) The statement is true for n = 2 and 3. Let it be true for all integer n ≥ 4. Then, 
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Hence, (a) is true for all n ≥ 0 by mathematical induction. Similar proofs can be given for 

other parts. 

[3] Further Scope: 
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