

ON FUZZY COMPLETELY PRIME HYPER BI- Γ -IDEALS IN Γ -HYPERNEAR –RINGS

¹A.Kalaiarasi, ²N.Meenakumari and ³N.Navaneetha Krishnan

^{1,3}Department of Mathematics, Kamaraj College, Thoothukudi

²Department of Mathematics, A.P.C.Mahalaxmi College for Women, Thoothukudi

ABSTRACT

In this paper, we introduce completely prime hyper bi- Γ -ideals in Γ -hypernear-rings and completely prime radical and obtain their properties. Also we introduce fuzzy completely prime hyper bi- Γ -ideals in Γ -hypernear –rings and investigated some of their properties.

1.Introduction

The concept of Γ -ring was introduced by Nobusawa and generalized by Barnes [1]. The concept of Γ -near-ring, a generalization of both near-ring and Γ -ring was introduced by Satyanarayana [6], subsequently, the ideal theory of Γ - near-rings was developed by authors like Satyanarayana [6] and G.L.Booth [3]. N.Meenakumari and T.Tamilzh Chelvam [4] introduced Fuzzy bi-ideals in gamma-near-rings. N.Meenakumari and T.Tamilzh Chelvam [5] introduced C-Prime bi-ideals in gamma-near-rings. Bijan Davvaz, Jianming Zhan and Kyung Ho kim [2] introduced Γ -hypernear-ring which is the generalization of hypernear-rings. In this paper, we introduce completely prime hyper bi- Γ -ideals in Γ hypernear-rings and completely prime radical and obtain their properties. Also we introduce fuzzy completely prime hyper bi- Γ -ideals in Γ -hypernear –rings and investigated some of their properties.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

2.Preliminaries

Definiation 2.1

A Γ -hyper-near-ring is a triple (M,+, Γ)

- I. Γ is a non empty set of binary operation such that $(M, +, \alpha)$ is a hyper near-ring for each $\alpha \in \Gamma$
- II. $x \alpha (y\beta z) = (x\alpha y) \beta z$ for all x, y, z \in M and $\alpha, \beta \in \Gamma$

Definition 2.2

A subset A of M is called left (respectively right) Γ -hyperideal of M if it satisfies

- I. A is a normal sub hypergroup of (M, +)
- II. $u \alpha x \in A$ (res. $(u+x) \alpha v u \alpha v \in A$) for all $x \in A$, $\alpha \in \Gamma$, and $u, v \in M$.

Definition 2.3

A subset A of M is called a Γ -hyperideal of M if it is both left Γ -hyperideal and right Γ -hyperideal.

Definition 2.4

A hyper subgroup H of (M, +) is called a hyper bi- Γ - ideal if $H\Gamma M \Gamma H \subseteq H$.

Definition 2.5

A fuzzy set μ of M is called a fuzzy hyper bi- $\Gamma\text{-ideal}$ of M if

- I. Inf $_{z \in x-y} \mu(z) \ge \min{\{\mu(x), \mu(y)\}}$
- II. $\mu(x \alpha y \beta z) \ge \min\{\{\mu(x), \mu(z)\} \text{ for all } x, y, z \in M, \alpha, \beta \in \Gamma$

3. Completely prime Γ - hyperideal

Definintion.3.1

An Γ - hyperideal(hyper bi- Γ - ideal) I of a Γ - hypernear-ring is said to be completely prime

 $\Gamma \text{ - hyperideal(hyper bi-}\Gamma \text{ - ideal) if a, b} \in M \text{ and } \gamma \in \Gamma \text{ and a } \gamma \text{ b} \in I \Longrightarrow a \in I \text{ or } b \in I.$

Definition 3.2

An Γ - hyperideal I of a Γ - hypernear-ring is said to be completely semi prime Γ - hyperideal if a \in M, a γ a \in I \Rightarrow a \in I

Definition 3.3

Let A be proper Γ - hyperideal of M. The intersection of all completely prime Γ - hyperideals of M containing A is called compeletely prime hyper radical of A and is denoted by C- rad (A).

Therorem 3.4

C- rad (A) is Γ -hyperideal of M.

Proof:

(i) Let $x \in rad(A)$, $n \in M$

 $x \in rad(A) = \cap P$

 $x \in P \text{ for all } P$

Since P is a normal sub hypergroup, this implies that

n+ x-n \in P for all P, n \in M

 \Rightarrow n +x-n $\in \cap P$, n $\in M$

 \Rightarrow n+x-n \in rad(A), n \in M.

(ii) Assume that $x \in rad(A)$, $\alpha \in \Gamma$, $u \in M$

 $x \in rad(A) = \cap P$

 $\Rightarrow x \in P \text{ for all } P$

Now $x \in P$, $\alpha \in \Gamma$ $u \in M$

Since P is a left Γ -hyperideal,

 \Rightarrow u α x \in P for all P

 \Rightarrow u $\alpha x \in \cap P$

 \Rightarrow u $\alpha x \in$ rad (A)

(iii) Let
$$x \in rad(A) \ \alpha \in \Gamma$$
, $u, v \in M$

Now $x \in rad(A) = \cap P$

 $\Rightarrow x \in P \text{ for all } P$

Since P is a right Γ -hyperideal,

 $(u+x) \alpha v - u \alpha v \in P$, for all P

 $\Rightarrow (u+x) \alpha v - u \alpha v \in \cap P$

 $(u+x) \alpha v - u \alpha v \in rad(A)$

Hence C-rad (A) is a Γ - hyperideal.

Proposition 3.5

C-rad (A) is completely prime Γ - hyperideal.

Proof:

Let a γ b \in rad(A) = \cap P

 \Rightarrow a γ b $\in \cap P$

 \Rightarrow a γ b \in P for all P

But P is completely prime Γ - hyperideal

 \Rightarrow either a \in P or b \in P for all P

 \Rightarrow either a $\in \cap P$ or b $\in \cap P$

 \therefore either a \in C- rad(A) or b \in C- rad(A)

Hence C-rad (A) is completely prime Γ - hyperideal

Theorem 3.5:

Let A be a Γ - hyperideal of M then C- rad(A) is a completely semi-prime Γ -hyperideal

Proof:

Let $S = C - rad(A) = \cap P$ Let $a \gamma a \in C - rad(A)$ $\Rightarrow a \gamma a \in C \cap P$, $\Rightarrow a \gamma a \in P$, for all P Since P is completely prime Γ -hyperideal $A \in P$, for all P $\Rightarrow a \in \cap P$ $\Rightarrow a \in C - rad(A)$

Hence C-rad (A) is a completely semi prime Γ - hyperideal.

4.Fuzzy Completely prime hyper bi-Γ -ideal

Definition 4.1

A fuzzy hyper bi- Γ - ideal μ of M is called completely prime if for all $x, y \in M, \gamma \in \Gamma, \mu(x \gamma y) \le \max \{\mu(x), \mu(y)\}.$

Definition 4.2

Let μ be a fuzzy hyper bi- Γ - ideal of M. The fuzzy completely prime hyper radical of μ , denoted by $\sqrt{\mu}$, is defined by $\sqrt{\mu} = \bigcap \{ \theta / \theta \text{ is a fuzzy completely prime hyper bi-} \Gamma$ - ideal of M containing $\mu \}$

Lemma 4.3

Let μ be a fuzzy subset of M. Then μ is a fuzzy hyper bi- Γ - ideal of M if and only if for all t $\in [0, 1]$ each level subset μ_t , is a hyper bi- Γ - ideal of M.

Proposition 4.4

Let μ be a fuzzy subset of M. Then μ is a completely prime fuzzy hyper bi- Γ -ideal of M if and only if for all t $\in [0, 1]$ each level subset μ_t , is a completely prime hyper bi- Γ - ideal of M.

Proof:

Suppose that μ be a completely prime fuzzy hyper bi- Γ - ideal of M. Then μ is a fuzzy hyper bi- Γ - ideal of M. By Lemma 4.3, μ_t is a hyper bi- Γ - ideal of M. Let x, y \in M and $\gamma \in \Gamma$ such that $x \gamma y \in \mu_t$. Then $\mu (x \gamma y) \ge t$. Since μ_t is a completely prime fuzzy hyper bi- Γ - ideal of M, we have $\mu(x \gamma y) \le \max \{\mu(x), \mu(y)\}$ Thus max $\{\mu(x), \mu(y)\} \ge t$ which implies that $\mu(x) \ge t$ or $\mu(y) \ge t$. Thus $x \in \mu_t$ or $y \in \mu_t$.

Conversely assume that μ_t is a completely prime hyper bi- Γ - ideal of M for any t $\in [0, 1]$. Then μ_t is a hyper bi- Γ -ideal of M. Again by lemma 4.3, μ is a fuzzy hyper bi- Γ - ideal of M. Let x, y \in M, $\gamma \in \Gamma$ such that $\mu(x \gamma y) = t$. Since μ_t is a completely prime bi- ideal of M and x γ y $\in \mu_t$, we have x $\in \mu_t$ or y $\in \mu_t$ which implies that $\mu(x) \ge t$ or $\mu(y) \ge t$. Thus $\mu(x \gamma y) \le \max \{\mu(x), \mu(y)\}$. Hence μ is a completely prime fuzzy hyper bi- Γ - ideal of M.

Lemma 4.5

Let H be a non- empty subset of M. Then H is a hyper bi- Γ - ideal of M if and only if the characteristic function μ_H of H is a fuzzy hyper bi- Γ - ideal of M.

Proposition 4.6

Let H be a non- empty subset of M. Then H is a completely prime hyper bi- Γ - ideal of M if and only if μ_H is a completely prime fuzzy hyper bi- Γ - ideal of M.

Proof:

Suppose that H is a completely prime hyper bi- Γ -ideal of M and μ_H is the characteristic function of H. Then by Lemma 4.5, μ_H is a fuzzy hyper bi- Γ - ideal of M. Let x, y \in M and $\gamma \in \Gamma$. If x γ y \in H, then μ_H (x γ y) =1. Since H is a completely prime hyper bi- Γ - ideal of M and x γ y \in H, we have x \in H or y \in H. Thus μ_H (x) = 1 or μ_H (y) =1 which implies that μ_H (x γ y) \leq max{ μ_H (x), μ_H (y)}. If x γ y \notin H, then μ_H (x γ y) = 0. Thus μ_H (x γ y) \leq max{ μ_H (x), μ_H (y)}. Conversely assume that μ_H is a completely prime fuzzy hyper bi- Γ - ideal of M. Then μ_H is a fuzzy hyper bi- Γ - ideal of M. By Lemma 4.5, H is a hyper bi- Γ - ideal of M. Let x, y \in M be such that x γ y \in H.

Then μ_H (x γ y) = 1. Since μ_H (x γ y) $\leq \max{\{\mu_H (x), \mu_H (y)\}}$, we have $\max{\{\mu_H (x), \mu_H (y)\}}$ = 1. Thus μ_H (x) = 1 or μ_H (y) = 1. Hence x \in H or y \in H.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

Proposition 4.7

If H is a hyper bi- Γ - ideal of M then for any t $\in (0,1)$, there exists a fuzzy hyper bi- Γ - ideal μ of M such that $\mu_t = H$.

Proposition 4.8

Let H be a completely prime hyper bi- Γ - ideal of M. For any t \in (0,1), there exists a completely prime fuzzy hyper bi- Γ - ideal of M such that $\mu_t = H$.

Proof:

Let t \in (0,1). Then by Proposition 4.6, there exists a fuzzy hyper bi- Γ - ideal μ of M defined by

 $\mu(x) = \begin{cases} t & \text{if } x \in B \\ 0 & \text{otherwise} \end{cases}$

such that $\mu_t = H$. If possible suppose μ is not a completely prime fuzzy hyper bi- Γ - ideal of M. Then there exists x, y \in M and some $\gamma \in \Gamma$ such that $\mu(x \gamma y) \ge \max\{\mu(x), \mu(y)\}$. Using the definition of μ , we get $\mu(x) = 0$, $\mu(y) = 0$ and $\mu(x \gamma y) = t$. Thus we get $x \gamma y \in H$ and $x \notin H$ and $y \notin H$. This is a contradiction since H is a completely prime hyper bi- Γ - ideal of M. Hence μ is a completely prime fuzzy hyper bi- Γ - ideal of M.

Now we omit the proofs which are straightforward.

Proposition 4.9

Let μ be a fuzzy subset of M with $\text{Im}(\mu) = \{1, \alpha\}$ where $\alpha \in [0,1)$. Then μ is a completely prime fuzzy hyper bi- Γ - ideal of M if and only if $M_{\mu} = \{x \in M / \mu(x) = \mu(0)\}$ is a completely prime hyper bi- Γ - ideal of M.

Proposition 4.10

Let $f: M \to N$ be a homomorphism. If μ is a completely prime hyper bi- Γ - ideal of M, then $f^{-1}(\mu)$ is a completely prime hyper bi- Γ - ideal of M.

References

- 1. Barnes W.E, On the Γ rings of Nobusawa, Pacific J.Math 18 (1966) 411-422.
- Bijan Davvaz, Jianming Zhan, Kyug Ho KIM, Fuzzy Γ-hypernear-rings, Computers and Mathamatics with Applications, 59 (2010)2846-2853.
- 3. Booth G.L. A note on Γ -Near rings , Stud.sci. Math.Hunger 23 (1988) 471-475.
- 4. N.MeenaKumari and T.Tamizh Chelvam, Fuzzy bi-ideals in Gamma near-rings, Journal of Algebra and Discrete Structure, vol.9 (2011) No 1& 2.Pp43-52.
- 5. N.Meenakumari and T.Tamizh Chelvam, C-Prime Fuzzy bi-ideals in Γ-near –rings, International Journal of Algebra and Statistics Vol2:2(2013),10-14.
- Satyanarayana Bhavanar, On Completely Prime and Completely Semi-prime Ideals in Γ-near-rings, International Journal of Computational Mathematical Ideas, Vol-2, No.1&2, 2010. PP 22-27.
- Satyanarayana Bhavanari A Note on Completely Semi-Prime Ideals in Near-rings International Journal of Computational Mathematical Ideas, Vol, 1No.3 (2009) 107-112.
- 8. T.Tamizh Chelvam and N.Meenakumari, Bi-ideals of Gamma Near-rings, Southeast Asian Bulletin of Mathamatics, 27 (2003), 1-7.