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ABSTRACT 

The prime ideals and prime radicals in the projective product of Gamma-rings are extensively 

studied in this paper. It is shown that the projective product of any two gamma rings can never be 

prime unless the two component gamma rings are factor gamma rings in which case the prime 

nature cannot be predicted. 
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1.Introduction:  

   In study of Gamma-ring theory which was introduced by Nobusawa [7] and later re-defined by 

Barnes [10], different kinds of radicals play an important role. There is a very strong theory of 

various radicals on general rings and Banach algebras [1,6]. Many prominent mathematicians 

have extended fruitfully many significant technical results on radicals of general ring to the 

radicals of Gamma-ring [2,3,4,5,8,9,11].  

2.Basic Terminologies: 

The following terminologies are used in our main results as described below: 

Definition 2.1: A gamma ring (𝑋,  ) in the sense of Nabusawa is said to be simple if for any two 

nonzero elements 𝑥, 𝑦 ∈ 𝑋, there exist 𝛾 ∈   such that 𝑥𝛾𝑦 ≠ 0. 
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Definition 2.2: If 𝐼 is an additive subgroup of a gamma ring (𝑋,  ) and 𝑋 𝐼 ⊆ 𝐼 (or 𝐼𝑋⊆I), 

then 𝐼 is called a left (or right) gamma ideal of 𝑋. If 𝐼 is both left and right gamma ideal then it 

is said to be a gamma ideal of (𝑋,  ) or simply an ideal. 

Definition 2.3: An ideal 𝐼 of a gamma ring (𝑋,  ) is said to be prime if for any two ideals 𝐴 and 

𝐵 of 𝑋, 𝐴𝐵 ⊆ 𝐼 => 𝐴 ⊆ 𝐼 𝑜𝑟 𝐵 ⊆ 𝐼.. 

Definition  2.4: Let (𝑋,  ) be a gamma ring with left and right operator rings 𝐿 and 𝑅 

respectively. 𝑋 is said to have a left (or right) unity if there exist 

𝑑1, 𝑑2 ,… . . , 𝑑𝑛 ∈ 𝑋 𝑎𝑛𝑑 𝛿1,𝛿2, … . .𝛿𝑛 ∈    such that for all 𝑥 ∈ 𝑋,  𝑑𝑖𝛿𝑖
𝑛
𝑖=1 𝑥 = 𝑥  (or  

 𝑥𝛿𝑖𝑑𝑖
𝑛
𝑖=1 = 𝑥 ). 

𝑋 is said to have a strong left (or strong right) unity if there exist 𝑑 ∈ 𝑋, 𝛿 ∈   such that 

 𝑑𝛿𝑥 = 𝑥 or 𝑥𝛿𝑑 = 𝑥 for all 𝑥 ∈ 𝑋. 

An ideal I of 𝑋 will be called left modular (left strongly modular) if the factor gamma ring 𝑋/𝐼 

has a left unity (strong left unity). Right modular and right strongly modular ideals are 

similarly defined. 

Definition 2.5: A gamma ring (𝑋,  ) is said to be a prime gamma ring if 𝑥𝑋 𝑥 =

0,𝑤𝑖𝑡ℎ 𝑥,𝑦 ∈ 𝑋 implies either 𝑥 = 0 𝑜𝑟 𝑦 = 0. 

Definition 2.6: An element 𝑎 of a gamma ring (𝑋,  ) is strongly nilpotent if there exist a 

positive integer 𝑛 such that (𝑎 )𝑛𝑎 =  𝑎𝑎 𝑎 … . .𝑎  𝑎 = 0. A subset 𝑆 of 𝑋 is strongly 

nil if each of its elements is strongly nilpotent. 𝑆 is strongly nilpotent if there exist a positive 

integer 𝑛 such that (𝑆 )𝑛𝑆 = 0. Clearly a strongly nilpotent set is also strongly nil. 

Definition 2.7:  A subset 𝑆 of 𝑋 is an 𝑚-system in 𝑋 if 𝑆 = ∅ or if 𝑎, 𝑏 ∈ 𝑆 implies  

< 𝑎 >  < 𝑏 > ⋂𝑆 ≠ ∅. The prime radical of 𝑋 which is denoted by Ῥ(𝑋), is defined as the set 

of elements 𝑥 in 𝑋 such that every 𝑚-system containing 𝑥 contains 0. Barnes has characterized 

Ῥ(𝑋) as the intersection of all prime ideals of 𝑋. 

Definition 2.8: For a gamma ring (𝑋,  ), the smallest ideal containing 𝑎 is called the principal 

ideal generated by 𝑎 and is denoted by < 𝑎 >. We have < 𝑎 >= 𝑍𝑎 + 𝑎𝑋 + 𝑋 𝑎 + 𝑋 𝑎𝑋, 

where 𝑍𝑎 = {𝑛𝑎: 𝑛 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟}. 
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Definition 2.9: Let  𝑋1,  1  and  𝑋2,  2  be two gamma rings. Let 𝑋 = 𝑋1 × 𝑋2 and 

  =  1 ×  2
. Then defining addition and multiplication on 𝑋 and   by, 

 𝑥1,𝑥2 +  𝑦1 ,𝑦2 = (𝑥1 + 𝑦1 ,𝑥2 + 𝑦2) , 

  𝛼1, 𝛼2 +  𝛽1, 𝛽2 = (𝛼1 + 𝛽1 ,𝛼2 + 𝛽2) 

and  𝑥1,𝑥2  𝛼1,𝛼2  𝑦1, 𝑦2 = (𝑥1𝛼1𝑦1 , 𝑥2𝛼2𝑦2) 

for every  𝑥1, 𝑥2 ,  𝑦1, 𝑦2 ∈ 𝑋 and  𝛼1, 𝛼2 ,  𝛽1, 𝛽2 ∈  , 

(𝑋,  ) is a gamma ring. We call this gamma ring as the Projective product of gamma rings.  

3.Main Results: 

Theorem 3.1: If (𝑋,  ) be a gamma ring with the strong right unity 𝑑, then no proper ideal of 𝑋 

contains 𝑑 and hence 𝑑 ∉ Ῥ(𝑋) 

Proof: Since 𝑑 is the strong right unity of 𝑋, so there exists a 𝛿 ∈    such that  

𝑥𝛿𝑑 = 𝑥 for all 𝑥 ∈ 𝑋                                         ………..(i) 

Let 𝑃 be an ideal of 𝑋 such that 𝑑 ∈ 𝑃. Obviously, 𝑃 ⊆ 𝑋. 

Let 𝑥 ∈ 𝑋 be any element. 

Then, 𝑥𝛿𝑑 ∈ 𝑋 𝑃 ⊆ 𝑃             [ Since 𝑃 is an ideal of 𝑋 ] 

=> 𝑥 ∈ 𝑃                                  [ Using (i) ] 

Thus we get, 𝑥 ∈ 𝑋 => 𝑥 ∈ 𝑃 i.e 𝑋 ⊆ 𝑃. So we get, 𝑃 = 𝑋. 

Thus no proper ideal of 𝑋 contains 𝑑. 

Since a prime ideal is a proper ideal, so no prime ideal of 𝑋 contains 𝑑 and so Ῥ(𝑋) being the 

intersection of all prime ideals of 𝑋 does not contain 𝑑 i.e 𝑑 ∉ Ῥ(𝑋). Hence the result. 

Theorem 3.2: For a non zero gamma ring (𝑋,  ) with the strong right unity 𝑑, if every non zero 

ideal contains 𝑑, then (𝑋,  ) is prime. 
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Proof: Since (𝑋,  ) is a gamma ring with the strong right unity 𝑑, so by the previous result, 

there does not exist any proper ideal containing 𝑑. But in (𝑋,  ), every nonzero ideal contains 𝑑. 

So the only ideals of 𝑋 are 0 and 𝑋 itself. 

Thus we have the only options,  

0 0 = 0 , 0𝑋 = 0 , 𝑋 0 = 0 and 𝑋𝑋 = 0 

The fourth option is absurd, because 𝑋𝑋 = 0 => 𝑋 = 0, which is not true. 

And the other three options show that, 

𝐴𝐵 = 0 => 𝐴 = 0 𝑜𝑟 𝐵 = 0, where 𝐴 𝑎𝑛𝑑 𝐵 are ideals of 𝑋. 

Hence (𝑋,  ) is a prime gamma ring and hence the result. 

Theorem 3.3: A non zero gamma ring (𝑋,  ) with the strong right unity 𝑑 can never be 

nilpotent. 

Proof: Since 𝑑 is the strong right unity of 𝑋, so there exists a 𝛿 ∈    such that  

𝑥𝛿𝑑 = 𝑥 for all 𝑥 ∈ 𝑋                                         ………..(i) 

Since (𝑋,  ) is non zero, so 𝑑 is also non zero. We show 𝑋 is not nilpotent. 

If possible, suppose, 𝑋 is nilpotent. Then every element of 𝑋 is nilpotent.  

Since 𝑑 ∈ 𝑋, so 𝑑 is a nilpotent element. 

So, for the above 𝛿 ∈  , there exists a positive integer 𝑛 such that, 

(𝑑𝛿)𝑛𝑑 = 0 

=> 𝑑𝛿𝑑𝛿 …… .𝑑𝛿𝑑 = 0 

=>  𝑑𝛿𝑑 𝛿 𝑑𝛿𝑑 𝛿 ……𝛿 𝑑𝛿𝑑 = 0 

=> 𝑑𝛿𝑑𝛿 ……𝛿𝑑 = 0     [ Using (i) ] 

=> 𝑑 = 0                        [ By repeated application of (i) ] 
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But 𝑑 = 0 is a contradiction and so our supposition is wrong. 

Hence 𝑋 is not nilpotent and the result. 

Theorem 3.4: Every prime gamma ring is simple. 

Proof: Let (𝑋,  ) is a prime gamma ring. We show  (𝑋,  ) is simple. 

If possible, let, (𝑋,  ) be not simple. 

Then there exists two non zero elements 𝑥,𝑦 ∈ 𝑋 such that, 𝑥𝛾𝑦 = 0 ∀ 𝛾 ∈  . 

Let 𝐴 =< 𝑥 > and 𝐵 =< 𝑦 >. Then 𝐴 𝑎𝑛𝑑 𝐵 are ideals of (𝑋,  ). 

Let 𝑎 ∈ 𝐴𝐵 be any element. Then 𝑎 ∈< 𝑥 >  < 𝑦 > 

Since 𝑥𝛾𝑦 = 0 ∀ 𝛾 ∈  , so 𝑎 = 0.  

Thus we get, 𝐴𝐵 = 0 

Since (𝑋,  ) is a prime gamma ring, so 𝐴𝐵 = 0 => 𝐴 = 0 𝑜𝑟 𝐵 = 0 

Without the loss of generality, let, 𝐴 = 0 

Then, < 𝑥 >= 0 => 𝑥 = 0, which contradicts that 𝑥 is non zero. 

Thus (𝑋,  ) is simple and hence the result. 

Theorem 3.5: The projective product of any two gamma rings can never be prime unless the two 

component gamma rings are factor gamma rings in which case the prime-ness can not be 

predicted. 

Proof: In my earlier works, it is being proved that the projective product of any two gamma rings 

can never be a simple gamma ring. So if the projective product of two gamma rings with the 

mentioned restriction is prime, then this product is also simple, as because by the previous result 

every prime gamma ring is simple as well. 

For the restricted part, let (𝑋,  ) be the projective product of two gamma rings  𝑋1 ,  1  and 

 𝑋2 ,  2 . If there exists a prime ideal 𝑃 = 𝐴 × 𝐵 of 𝑋, with 𝐴 ⊊ 𝑋1 and 𝐵 ⊊ 𝑋2 , then 𝐴 and 𝐵 

are prime ideals of 𝑋1 and 𝑋2 respectively, which is shown in result(7). 
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Since, 𝐴, 𝐵 and 𝑃 are prime ideals of 𝑋1, 𝑋2 and 𝑋 respectively, so the factor gamma rings 
𝑋1

𝐴 , 

𝑋2
𝐵  and 𝑋 𝑃  are prime gamma rings. Now, it can be easily verified that, 

𝑋
𝑃 =

(𝑋1 × 𝑋2)
(𝐴 × 𝐵) =  𝑋1

𝐴  ×  𝑋2
𝐵   

That is, 𝑋 𝑃  is the projective product of two gamma rings 
𝑋1

𝐴  and  
𝑋2

𝐵  and which is prime as 

well. Thus it is not possible for the projective product of two gamma rings with the mentioned 

restriction to be prime and hence the result. 

Theorem 3.6: Let (𝑋,  ) be the projective product of two gamma rings  𝑋1, 
1
  and  𝑋2, 

2
 . Then 

any two ideals of 𝑋1 and 𝑋2 give rise to an ideal of 𝑋 and vice versa. 

Proof: Let 𝐴 and 𝐵 be two ideals of 𝑋1 and 𝑋2  respectively.  

Then 𝑋1  1𝐴 ⊆ 𝐴, 𝐴 1𝑋1 ⊆ 𝐴  and  𝑋2  2𝐵 ⊆ 𝐵, 𝐵 2𝑋2 ⊆ 𝐵 

Since 𝐴 ⊆ 𝑋1  𝑎𝑛𝑑 𝐵 ⊆ 𝑋2 , so, 𝐶 = 𝐴 × 𝐵 ⊆ 𝑋1 × 𝑋2 = 𝑋. 

Now, 𝑋 𝐶 =  𝑋1 × 𝑋2   1 ×  2  𝐴 × 𝐵 = 𝑋1  1𝐴 × 𝑋2  2𝐵 ⊆ 𝐴 × 𝐵 = 𝐶 

=> 𝑋 𝐶 ⊆ 𝐶.  Similarly, 𝐶𝑋 ⊆ 𝐶. 

So, 𝐶 = 𝐴 × 𝐵 is an ideal of 𝑋. 

Conversely, let 𝐶 be an ideal of 𝑋. Then 𝐶 is of the form 𝐴 × 𝐵, where 𝐴 ⊆ 𝑋1 and 𝐵 ⊆ 𝑋2 . 

We show, 𝐴 𝑎𝑛𝑑 𝐵 are ideals of 𝑋1 and 𝑋2 respectively. 

Since 𝐶 is an ideal of 𝑋, so, 𝑋 𝐶 ⊆ 𝐶 and 𝐶𝑋 ⊆ 𝐶. 

Now,  𝑋 𝐶 ⊆ 𝐶 =>  𝑋1 × 𝑋2   1 ×  2  𝐴 × 𝐵 ⊆ 𝐴 × 𝐵 => 𝑋1  1𝐴 × 𝑋2  2𝐵 ⊆ 𝐴 × 𝐵 

=> 𝑋1  1𝐴 ⊆ 𝐴 and 𝑋2  2𝐵 ⊆ 𝐵                                         ……………………………….(i) 

Again, 𝐶𝑋 ⊆ 𝐶 => 𝐴 1𝑋1 ⊆ 𝐴  and 𝐵 2𝑋2 ⊆ 𝐵            ……………………………….(ii) 
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Thus from (i) and (ii), we get, 𝐴 𝑎𝑛𝑑 𝐵 are ideals of 𝑋1 and 𝑋2 respectively. Hence the result. 

Theorem 3.7: Let (𝑋,  ) be the projective product of two gamma rings  𝑋1 ,  1  and  𝑋2,  2 . 

Then every prime ideal of 𝑋 gives rise to at least one prime ideal of 𝑋1 or 𝑋2 and conversely every 

prime ideal of 𝑋1 or 𝑋2 give rise to a prime ideal of 𝑋. 

Proof: Let 𝑃 = 𝐴 × 𝐵 be a prime ideal of 𝑋. Then 𝑃 is a proper subset of 𝑋, so at least one of 

𝐴 𝑎𝑛𝑑 𝐵 is a proper subset of 𝑋1 and 𝑋2 respectively. 

Without the loss of generality, let, 𝐴 ⊊ 𝑋1 . We show, 𝐴 is a prime ideal of 𝑋1. 

Let, 𝐼 and 𝐽 be two ideals of  𝑋1 such that 𝐼 1𝐽 ⊆ 𝐴 => 𝐼 1𝐽 × 𝐵 ⊆ 𝐴 × 𝐵 

=> 𝐼┌1𝐽 × 𝐵┌2𝐵 ⊆ 𝐼┌1𝐽 × 𝐵 ⊆ 𝐴 × 𝐵       [ Since 𝐵 is an ideal, so 𝐵 2𝐵 ⊆ 𝐵 ] 

=>  𝐼 × 𝐵   1 ×  2  𝐽 × 𝐵 ⊆ 𝐴 × 𝐵 => 𝐼′   𝐽′ ⊆ 𝐴 × 𝐵, where 𝐼′ = 𝐼 × 𝐵 and 𝐽′ = 𝐽 × 𝐵 

are ideals of 𝑋. 

Since 𝐴 × 𝐵 is a prime ideal so, 𝐼′   𝐽′ ⊆ 𝐴 × 𝐵 => 𝐼′ ⊆ 𝐴 × 𝐵 or 𝐽′ ⊆ 𝐴 × 𝐵 

If 𝐼′ ⊆ 𝐴 × 𝐵 then 𝐼 × 𝐵 ⊆ 𝐴 × 𝐵 => 𝐼 ⊆ 𝐴 

And if 𝐽′ ⊆ 𝐴 × 𝐵 then 𝐽 × 𝐵 ⊆ 𝐴 × 𝐵 => 𝐽 ⊆ 𝐴 

Thus we get, 𝐼  1𝐽 ⊆ 𝐴 => 𝐼 ⊆ 𝐴 or 𝐽 ⊆ 𝐴 

So, 𝐴 is a prime ideal of 𝑋1. 

Converse part: Let 𝐴 and 𝐵 be two prime ideals of 𝑋1 and 𝑋2 respectively. Then, 𝑀 = 𝐴 × 𝑋2 and 

𝑁 = 𝑋1 × 𝐵 are two ideals of 𝑋. We show 𝑀 𝑎𝑛𝑑 𝑁 are prime ideals 𝑋. 

For this, let, 𝑃 = 𝑃1 × 𝑃2  and 𝑄 = 𝑄1 × 𝑄2 be two ideals of 𝑋 such that, 𝑃𝑄 ⊆ 𝑀. 

Then 𝑃1, 𝑄1 and 𝑃2, 𝑄2 are ideals of 𝑋1 and 𝑋2  respectively. 

=>  𝑃1 × 𝑃2   1 ×  2  𝑄1 × 𝑄2 ⊆ 𝑀 => 𝑃1  1𝑄1 × 𝑃2  2𝑄2 ⊆ 𝐴 × 𝑋2 

=> 𝑃1  1𝑄1 ⊆ 𝐴  and  𝑃2  2𝑄2 ⊆ 𝑋2 

Since 𝐴 is a prime ideal of 𝑋1, so, 𝑃1  1𝑄1 ⊆ 𝐴 => 𝑃1 ⊆ 𝐴 𝑜𝑟 𝑄1 ⊆ 𝐴 
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If  𝑃1 ⊆ 𝐴 then 𝑃1 × 𝑃2 ⊆ 𝐴 × 𝑋2 => 𝑃 ⊆ 𝑀 

Similarly if 𝑄1 ⊆ 𝐴 then 𝑄1 × 𝑄2 ⊆ 𝐴 × 𝑋2 => 𝑄 ⊆ 𝑀 

Thus 𝑀 is a prime ideal of 𝑋. Similarly, 𝑁 is also a prime ideal of 𝑋. Hence the result. 

Theorem 3.8: If (𝑋,  ) be the projective product of two gamma rings  𝑋1 ,  1  and  𝑋2 ,  2 , 

then  Ῥ(𝑋1) × Ῥ(𝑋2) ⊆ Ῥ(𝑋). 

Proof: We know, Ῥ 𝑋 = Intersection of all prime ideals of 𝑋 

i.e  Ῥ 𝑋 = ⋂𝑃, where 𝑃 represents all prime ideals of 𝑋 

Since every prime ideal of 𝑋 gives rise to at least one prime ideal of 𝑋1 or 𝑋2 , so, 

Ῥ 𝑋 = ⋂𝐴 × ⋂𝐵, where some 𝐴 𝑎𝑛𝑑 𝐵 are prime ideals of 𝑋1 and 𝑋2 respectively and some are 

not. Those 𝐴 𝑎𝑛𝑑 𝐵 which are not prime are equal to 𝑋1 and 𝑋2 respectively. 

= ⋂𝐴 × ⋂𝐵, where 𝐴 𝑎𝑛𝑑 𝐵 are some prime ideals of 𝑋1 and 𝑋2 respectively. 

[ Since, ⋂𝐴, where 𝐴 is either prime in 𝑋1 or 𝐴 = 𝑋1 is equal to ⋂𝐴, where 𝐴 is only prime 𝑋1 

and ⋂𝐵, where 𝐵 is either prime in 𝑋2 or 𝐵 = 𝑋2 is equal to ⋂𝐵, where 𝐴 is only prime in𝑋2] 

⊇ ⋂𝐴 × ⋂𝐵, where 𝐴 𝑎𝑛𝑑 𝐵 represents all prime ideals of 𝑋1 and 𝑋2 respectively. 

= Ῥ(𝑋1) × Ῥ(𝑋2) 

Hence, Ῥ(𝑋1) × Ῥ(𝑋2) ⊆ Ῥ(𝑋). 
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