

ON SUMMABILITY FACTORS FOR GENERALIZED ABSOLUTE NÖRLUND SUMMABILITY

Zakawat U. Siddiqui & Bahr E. G. Basi Department of Mathematics and Statistics, University of Maiduguri, Nigeria

ABSTRACT

In this paper we determine the necessary and sufficient conditions to obtain summability factors in transition from $|N, p_n, q_n|$ boundedness to $\varphi - |\overline{N}, q_n, \delta|_k$ summability. The result obtained here generalizes many known results.

AMS subject classification: 40F05, 40D25

Key words: Absolutely Summability Factors, Regular summability methods, Infinite series, Generalized Nőrlund means.

1. Introduction

Let $\{U_n\}$ denote the sequence of $|\overline{N}, q_n|$ mean of a sequence $\{s_k\}$. Then

$$U_n = (Q_n)^{-1} \sum_{m=0}^n q_m s_m \qquad (Q_n \neq 0)$$
 (1.11)

where $Q_n = \sum_{m=0}^n q_m$.

We say that a sequence $\{s_n\}$ is summable by the method $\varphi - |\overline{N}, p_n, \delta|_k$ if

$$\sum_{n=1}^{\infty} \varphi_n^{\delta k + k - 1} | U_n - U_{n-1} |^k < \infty$$
(1.12)

We write formally the constants b_n to define by the identity

$$(\sum_{m=0}^{n} q_m x^m)^{-1} = \sum_{n=0}^{\infty} b_n x^n.$$
 (1.13)

We also write

$$B_n = b_0 + b_1 + \dots + b_n$$
. (1.14)

Let $\sum a_n$ be an infinite series with the sequence of partial sum s_n . Let $\{u_n\}$ denote the sequences of (N, p, q) means of $\{s_n\}$. Thus

$$u_n = (R_n)^{-1} \sum_{m=0}^n p_{n-m} q_m s_m,$$
(1.15)

where

$$R_n = \sum_{m=0}^n p_{n-m} q_m$$
, for any n, (1.16)

 $p_{-1} = q_{-1} = R_{-1} = 0.$

The method (N, p, q) is regular if and only if the following conditions are satisfied:

- (i) $\operatorname{Lim}_{n} p_{n-m}q_{m} / R_{n} = 0$ for each m,
- (ii) $\sum_{m=0}^{n} |p_{n-m}q_m| < M$. where M is a positive constant independent of n.

We say that $\{p_n\} \in \mathcal{M}$, if

$$p_n > 0$$
, $\frac{p_{n+1}}{p_n} \le \frac{p_{n+2}}{p_{n+1}} \le 1$, $n = 0, 1, \cdots$

A series $\sum a_n$ is said to be (N, p, q) bounded, or $\sum a_n = O(1)(N, p, q)$ if

$$\sum_{m=1}^{n} p_{n-m} q_m = O(R_n)$$
, as $n \to \infty$.

For two methods of summability *A* and *B*, we say that $\varepsilon_n \in (A, B)$ if $\sum a_n \varepsilon_n$ is summable by method B whenever $\sum a_n$ is summable by the method A.

2. Known results.

The following theorem was proved by Das in 1966 [1].

Theorem 2.1. Let $\{p_n\} \in \mathcal{M}, q_n \ge 0$. Then if $\sum a_n$ is |N, p, q| summable, it is $|\overline{N}, q_n|$ summable.

Later, Singh and Sharma [2] proved the following result.

Theorem 2.2. Let $\{p_n\} \in \mathcal{M}, q_n > 0$ and let $\{q_n\}$ be a monotonic nondecreasing sequence. Then a necessary and sufficient condition that $\sum a_n \varepsilon_n$ is summable $|\overline{N}, q_n|$ whenever

$$\sum a_{n} = O(1) (N, p, q),$$

$$\sum_{n=0}^{\infty} \frac{q_{n}}{Q_{n}} |\varepsilon_{n}| < \infty,$$

$$\sum_{n=0}^{\infty} |\varepsilon_{n}| < \infty, \text{ and }$$

$$\sum_{n=0}^{\infty} \frac{Q_{n+1}}{q_{n+1}} |\Delta^2 \varepsilon_n| < \infty,$$

is that

$$\sum_{n=1}^{\infty} \frac{q_n}{Q_n} |s_n| |\varepsilon_n| < \infty.$$

Recently Rhoades and Savaş [3] generalized the above result in the following form: **Theorem 2.3.** Let $\{p_n\} \in \mathcal{M}, q_n > 0, \{q_n\}$ be a monotonic nonincreasing sequence and $nq_n = O(Q_n)$. A necessary and sufficient condition that $\varepsilon \in (|N, p, q|_k, |\overline{N}, q_n|_k)$ whenever

(i)
$$\sum a_n = O(1) | N, p, q |_k$$

(ii)
$$\sum_{n=0}^{\infty} \frac{q_n}{q_n} |\varepsilon_n|^k < \infty$$
,

(iii)
$$\sum_{n=0}^{\infty} \left(\frac{Q_n}{q_n}\right)^{k-1} |\Delta \varepsilon_n|^k < \infty,$$

(iv)
$$\sum_{n=0}^{\infty} \left(\frac{Q_{n+1}\Delta q_n}{q_n q_{n+1}}\right)^k \left(\frac{Q_n}{q_n}\right)^{k-1} |\Delta \varepsilon_n|^k < \infty,$$

(v)
$$\sum_{n=0}^{\infty} \left(\frac{Q_{n+1}}{q_{n+1}}\right)^k \left(\frac{Q_n}{q_n}\right)^{k-1} |\Delta^2 \varepsilon_n|^k < \infty,$$

is that

(vi)
$$\sum_{n=1}^{\infty} n^{k-1} \left(\frac{q_n}{q_n}\right)^k |s_n|^k |\varepsilon_n|^k < \infty$$

In this note we generalize the above result for $\varphi - |\overline{N}, q_n, \delta|_k$ summability methods, where $\varphi = \{\varphi_n\}$ is a sequence of positive numbers. The result obtained here will generalize many known results.

3. Some Lemmas.

We shall require the following lemmas for the proof of our main result.

- **Lemma 3.1**.[4] Let $\{p_n\} \in \mathcal{M}$, then
 - (a) $b_0 > 0$, $b_n \le 0$, $n = 1, 2, \cdots$
 - (b) $\sum_{n=0}^{\infty} b_n x^n$ is absolutely convergent for $|\mathbf{x}| \leq 1$, and

(c)
$$\sum_{n=0}^{\infty} b_n = 0$$
, when $\sum_{n=0}^{\infty} p_n = \infty$, > 0 , otherwise.

Lemma 3.2. [1] If

$$u_n = (R_n)^{-1} \sum_{m=0}^n p_{n-m} q_m s_m,$$

then

$$s_n = (q_n)^{-1} \sum_{m=0}^n b_{n-m} R_m s_m.$$

Lemma 3.3. [1] We have

$$\sum_{m=0}^n B_{n-m}R_m = Q_n,$$

where \mathbf{B}_n , \mathbf{R}_n and \mathbf{Q}_n are defined as in Section 1.

4. Main Result.

In what follows, we shall prove the following result.

Theorem 4.1: Let $\{p_n\} \in \mathcal{M}, q_n > 0, \{q_n\}$ be a monotonic nonincreasing sequence and $\varphi_n q_n = O(Q_n)$, where φ_n is a sequence of positive numbers. A necessary and sufficient condition that $\sum a_n \varepsilon_n$ is summable $\varphi - |\overline{N}, q_n, \delta|_k$, whenever conditions (i) – (v) of Theorem 2.3 hold together with

(vi)
$$\sum_{n=m+1}^{\infty} \varphi_n^{\delta k} q_n Q_n^{-1} Q_{n-1}^{-1} = O(Q_m^{-1})$$

(vii)
$$\sum_{n=0}^{\infty} \left(\varphi_n^{\delta k/(k-1)} Q_n q_n^{-1} \right)^{k-1} |\Delta \varepsilon_n|^k < \infty$$

is that

(viii)
$$\sum_{n=1}^{\infty} \varphi_n^{\delta k+k-1} (q_n Q_n^{-1})^k |s_n|^k |\varepsilon_n|^k < \infty$$

Proof. Let u_n be defined by (1.14) and let U_n be the $|\overline{N}, q_n|$ mean of the sequence $\sum a_n \varepsilon_n$. Then by definition, we have

$$U_n = (Q_n)^{-1} \sum_{j=0}^n q_j \sum_{l=0}^j a_l \varepsilon_l = (Q_n)^{-1} \sum_{j=0}^n (Q_n - Q_{n-1}) a_j \varepsilon_j.$$

Then for $n \geq 1$, we have

$$U_{n} - U_{n-1} = q_{n} (Q_{n} Q_{n-1})^{-1} \sum_{j=0}^{n} Q_{j-1} a_{j} \varepsilon_{j},$$

$$= q_{n} (Q_{n} Q_{n-1})^{-1} \sum_{j=0}^{n} Q_{j-1} \varepsilon_{j} [\sum_{l=0}^{j} a_{l} - \sum_{l=0}^{j-1} a_{l}]$$

$$= q_{n} (Q_{n} Q_{n-1})^{-1} [\sum_{j=0}^{n} Q_{j-1} \varepsilon_{j} \sum_{l=0}^{j} a_{l} - \sum_{j=0}^{n} Q_{j} \varepsilon_{j+1} \sum_{l=0}^{j} a_{l}]$$

$$= q_{n} (Q_{n} Q_{n-1})^{-1} [\sum_{j=0}^{n-1} \Delta (Q_{j-1} \varepsilon_{j}) \sum_{l=0}^{j} a_{l} + s_{n} \varepsilon_{n} Q_{n-1}]$$

$$= -q_{n} (Q_{n} Q_{n-1})^{-1} \sum_{j=0}^{n-1} q_{j} s_{j} \varepsilon_{j} + q_{n} (Q_{n} Q_{n-1})^{-1} \sum_{j=0}^{n-1} Q_{j} s_{j} \Delta \varepsilon_{j} + q_{n} Q_{n}^{-1} s_{n} \varepsilon_{n}$$

$$= U_{n1} + U_{n2} + U_{n3}, \text{ say}$$
(4.11)

Now invoking Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \varphi_n^{\delta k + k - 1} |U_{ni}|^k < \infty, \qquad i = 1, 2, 3.$$
(4.12)

Now, using Lemma 3.32 and Lemma 3.33, we obtain

$$U_{n1} = -q_n (Q_n Q_{n-1})^{-1} \sum_{j=0}^{n-1} q_j s_j \varepsilon_j$$

= $-q_n (Q_n Q_{n-1})^{-1} \sum_{j=0}^{n-1} q_j \varepsilon_j q_j^{-1} \sum_{m=0}^{j} b_{j-m} R_m u_m$
= $-q_n (Q_n Q_{n-1})^{-1} \sum_{m=0}^{n-1} R_m u_m \sum_{j=m}^{n-1} b_{j-m} \varepsilon_j$
= $-q_n (Q_n Q_{n-1})^{-1} \sum_{m=0}^{n-1} R_m u_m [\sum_{j=m}^{n-1} (B_{j-m} \Delta \varepsilon_j) + b_{n-1-m} \varepsilon_j]$
= $U_{n1}^1 + U_{n1}^2$, say. (4.13)

Now, we have

$$\sum_{n=1}^{\infty} \varphi_n^{\delta k+k-1} |U_{n1}^1|^k = \sum_{n=1}^{\infty} \varphi_n^{\delta k+k-1} [q_n (Q_n Q_{n-1})^{-1}]^k \left| \sum_{m=0}^{n-1} R_m u_m \sum_{j=m}^{n-1} B_{j-m} \Delta \varepsilon_j \right|^k$$

A similar treatment will yield

$$\sum_{n=1}^{\infty} \varphi_n^{\delta k+k-1} |U_{n1}^2|^k = \sum_{n=1}^{\infty} \varphi_n^{\delta k+k-1} q_n^k (Q_n Q_{n-1})^{-k} |\sum_{m=0}^{n-1} \varepsilon_n B_{n-1-m} R_m u_m|^k$$

Now,

$$\begin{aligned} U_n^2 &= q_n (Q_n Q_{n-1})^{-1} \sum_{m=0}^{n-1} Q_m \Delta \varepsilon_m s_m \\ &= q_n (Q_n Q_{n-1})^{-1} \sum_{j=0}^{n-1} Q_m \Delta \varepsilon_m q_m^{-1} \sum_{j=0}^{m} b_{m-j} R_j t_j \text{ [using Lemma 3.2]} \\ &= q_n (Q_n Q_{n-1})^{-1} \sum_{j=0}^{n-1} R_j t_j \sum_{m=j}^{n-1} Q_m q_m^{-1} \Delta \varepsilon_m b_{m-j} \\ &= -q_n (Q_n Q_{n-1})^{-1} \sum_{j=0}^{n-1} R_j t_j \sum_{m=j}^{n-1} B_{m-j} q_{m+1} q_m^{-1} \Delta \varepsilon_m + \\ &+ q_n (Q_n Q_{n-1})^{-1} \sum_{j=0}^{m-1} R_j t_j \sum_{m=j}^{n-1} B_{m-j} Q_{m+1} \Delta (q_m^{-1}) \Delta \varepsilon_m + \\ &+ q_n (Q_n Q_{n-1})^{-1} \sum_{j=0}^{m-1} R_j t_j \sum_{m=j}^{n-1} B_{m-j} Q_{m+1} q_m^{-1} \Delta^2 \varepsilon_m + \\ &+ q_n (Q_n Q_{n-1})^{-1} \sum_{j=0}^{n-1} R_j t_j B_{n-1-j} Q_n q_n^{-1} \Delta \varepsilon_n \\ &= U_{n2}^1 + U_{n2}^2 + U_{n2}^3 + U_{n2}^4, \text{ say.} \end{aligned}$$

Using condition (i), (iii) and Hölder's inequality, we obtain

$$\sum_{n=1}^{\infty} \varphi_n^{\delta k + k - 1} |U_{n2}^1|^k = \sum_{n=1}^{\infty} \varphi_n^{\delta k + k - 1} (q_n (Q_n Q_{n-1})^{-1})^k \left| \sum_{j=0}^{n-1} R_j t_j \sum_{m=j}^{n-1} B_{m-j} q_{m+1} q_m^{-1} \Delta \varepsilon_m \right|^k$$

$$\leq \sum_{n=1}^{\infty} (\varphi_n q_n Q_{n-1}^{-1})^{k-1} (\varphi_n^{\delta k} q_n Q_n^{-1} Q_{n-1}^{-k}) \left(\sum_{j=0}^{n-1} R_j u_j \sum_{m=j}^{n-1} |B_{m-j}| q_{m+1} q_m^{-1}| \Delta \varepsilon_m | \right)^k$$

$$= O(1) \sum_{n=1}^{\infty} (\varphi_n^{\delta k} q_n Q_n^{-1} Q_{n-1}^{-k}) (\sum_{j=0}^{n-1} R_j \sum_{m=j}^{n-1} |B_{m-j}| q_{m+1} q_m^{-1}| \Delta \varepsilon_m |)^k$$

$$= O(1) \sum_{n=1}^{\infty} (\varphi_n^{\delta k} q_n Q_n^{-1} Q_{n-1}^{-k}) (\sum_{m=0}^{n-1} q_{m+1} q_m^{-1}| \Delta \varepsilon_m | \sum_{j=0}^{m} R_j B_{m-j} |)^k$$

$$= O(1) \sum_{n=1}^{\infty} (\varphi_n^{\delta k} q_n Q_n^{-1} Q_{n-1}^{-k}) (\sum_{m=0}^{n-1} q_{m+1} q_m^{-1}| \Delta \varepsilon_m | Q_m |)^k$$

$$= O(1) \sum_{n=1}^{\infty} (\varphi_n^{\delta k} q_n Q_n^{-1} Q_{n-1}) \sum_{m=0}^{n-1} q_{m+1}^k q_m^{-k} | \Delta \varepsilon_m |^k Q_m^k q_m^{1-k} (Q_{n-1}^{-1} \sum_{m=0}^{n-1} q_m)^{k-1}$$

$$= O(1) \sum_{n=0}^{\infty} q_{m+1}^k q_m^{-k} | \Delta \varepsilon_m |^k Q_m^k q_m^{1-k} \sum_{n=m+1}^{\infty} (\varphi_n^{\delta k} q_n Q_n^{-1} Q_{n-1})$$

$$= O(1) \sum_{m=0}^{\infty} Q_m^{k-1} q_m^{1-k} | \Delta \varepsilon_m |^k Q_m^k q_m^{1-k} Q_m^{-1} \quad \text{[using (vi)]}$$

$$= O(1) \sum_{m=0}^{\infty} Q_m^{k-1} q_m^{1-k} | \Delta \varepsilon_m |^k Q_m^k q_m^{1-k} Q_m^{-1} \quad \text{[using (vi)]}$$

$$= O(1) (\text{using (iii)} \qquad (4.17)$$

Further, using Hölder's inequality

A similar treatment gives us

$$\begin{split} &\sum_{n=1}^{\infty} \varphi_{n}^{\delta k+k-1} |U_{n2}^{3}|^{k} \\ &= \sum_{n=1}^{\infty} \varphi_{n}^{\delta k+k-1} (q_{n}(Q_{n}Q_{n-1})^{-1})^{k} |\sum_{j=0}^{n-1} R_{j} t_{j} \sum_{m=j}^{n-1} B_{m-j} Q_{m+1} q_{m+1}^{-1} \Delta^{2} \varepsilon_{m} |^{k} \\ &\leq \sum_{n=1}^{\infty} (\varphi_{n} q_{n} Q_{n}^{-1})^{k-1} \varphi_{n}^{\delta k} q_{n} Q_{n}^{-1} Q_{n-1}^{-k} (\sum_{j=0}^{n-1} R_{j} t_{j} \sum_{m=j}^{n-1} |B_{m-j}| Q_{m+1} q_{m+1}^{-1} |\Delta^{2} \varepsilon_{m}|)^{k} \\ &= O(1) \sum_{n=1}^{\infty} \varphi_{n}^{\delta k} q_{n} Q_{n}^{-1} Q_{n-1}^{-k} (\sum_{m=0}^{n-1} Q_{m+1} q_{m+1}^{-1} |\Delta^{2} \varepsilon_{m}| \sum_{j=0}^{m} R_{j} B_{m-j})^{k} \\ &= O(1) \sum_{n=1}^{\infty} \varphi_{n}^{\delta k} q_{n} Q_{n}^{-1} Q_{n-1}^{-k} (\sum_{m=0}^{n-1} Q_{m} Q_{m+1} q_{m+1}^{-1} |\Delta^{2} \varepsilon_{m}|)^{k} \end{split}$$

$$= O(1) \sum_{n=1}^{\infty} \varphi_n^{\delta k} q_n Q_n^{-1} Q_{n-1}^{-k} \sum_{m=0}^{n-1} (Q_{m+1} q_{m+1}^{-1})^k Q_m^k q_m^{1-k} |\Delta^2 \varepsilon_m|^k (Q_{n-1}^{-1} \sum_{m=0}^{n-1} q_m)^{k-1}$$

= $O(1) \sum_{m=0}^{\infty} (Q_{m+1} q_{m+1}^{-1})^k (Q_m q_m^{-1})^{k-1} Q_m |\Delta^2 \varepsilon_m|^k \sum_{n=m+1}^{\infty} \varphi_n^{\delta k} q_n Q_n^{-1} Q_{n-1}^{-k}$
= $O(1)$, (using (vi) and (v) (4.19)

Now we use (iv) and (vi) to obtain

$$= O(1), \qquad (using (vii)) \qquad (4.20)$$

Now using equations (4.13) – (4.20) in (4.12), we find that the necessary and sufficient condition for $\sum a_n \varepsilon_n$ to be summable $\varphi - |\overline{N}, q_n, \delta|_k$ whenever $\sum a_n$ is |N, p, q| bounded is that

$$\sum_{n=1}^{\infty} \varphi_n^{\delta k + k - 1} |U_{n3}|^k < \infty$$

i.e.

$$\sum_{n=1}^{\infty} \varphi_n^{\delta k + k - 1} (q_n Q_n^{-1})^k |s_n|^k |\varepsilon_n|^k < \infty$$

Which is the required condition (viii).

This completes the proof of the theorem.

5. Concluding Remarks:

By taking $\varphi_n = n$ and $\delta = 0$, we get Theorem 2.3 and in that case the condition (vi) will be obvious, while condition (vii) reduces to condition (iii). By selecting the values of δ and φ_n appropriately, we can also get the results of Mazhar [5] and Sulaiman [6], and thus all the other results generalized by them.

REFERENCES

- G. Das, On some methods of summability, Quart J. Math Oxford Ser, 17(2): 244 256, 1966.
- N. Singh and N. Sharma, On (N, p, q) summability factors of infinite series, *Proc. Nat. Acad. Sci.* (*Math. Sci.*), 110:61 68, 2000.
- [3] B. E. Rhoades and Ekrem Savaş, On summability factors for $|\overline{N}, p_n|_k$, Adv. In Dynamical System and Appl., 1(1):79 89, 2006.
- [4] E. C. Daniel, On the $|\overline{N}, p_n|$ summability of infinite series, *J. Math. (Jabalpur)*, 2:39 48, 1966.
- [5] S. M. Mazhar, $|\overline{N}, p_n|$ summability of infinite series, *Kodai Math. Sem. Rep.*, **18**:96 100, 1966.
- [6] W. T. Sulaiman, Relations on some summability methods, Proc. Amer. Math. Soc..
 118:1139 1145, 1993.