RIGHT k-FIBONACCI SEQUENCE AND RELATED IDENTITIES

¹Arvadia Mansukh P., ² Shah Devbhadra V.

¹ Shri U P Arts, Smt. M G Panchal Science & Shri V L Shah Comm. College, Pilvai-382850

² Sir P T Sarvajanik College of Science, Surat.

ABSTRACT

Fibonacci sequence $\{F_n\}$ is defined by the recurrence relation $F_n = F_{n-1} + F_{n-2}$, $n \ge 2$ with initial condition $F_0 = 0$, $F_1 = 1$. This sequence has been generalized in many ways, some by preserving the initial conditions, and other by preserving by recurrence relation. In this paper, we study the right k-Fibonacci sequence $\{F_{k,n}^R\}$ defined by the recurrence relation, $F_{k,n}^R = F_{k,n-1}^R + kF_{k,n-2}^R$, $n \ge 2$ with initial conditions $F_{k,0}^R = 0$ and $F_{k,1}^R = 1$ We derive some interesting identities for this sequence.

1. Introduction:

Fibonacci sequence $\{F_n\}$, named after Leonardo Pisano Fibonacci (1170–1250), is defined as $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$, $n \ge 2$ which gives the sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 The Fibonacci numbers are perhaps most famous for appearing in the rabbit-breeding problem, introduced by Leonardo de Pisa in 1202 in his book called *Liber Abaci*. However, they also occur in Pascal's triangle [1].

Some authors ([2, 3, 4, 5, 6]) have generalized the Fibonacci sequence by preserving the recurrence relation and altering the first two terms of the sequence, while others ([7, 8, 9, 10, 11, 12, 13]) have generalized the Fibonacci sequence by preserving the first two terms of the sequence but altering the recurrence relation slightly. In [14, 15, 16] new generalization depends on two real parameters used in a non-linear recurrence relation.

In this paper, a new generalization of the Fibonacci numbers introduced. It should be noted that the recurrence formula of these numbers depends on one real parameter. These numbers extend the definition of the k-Fibonacci numbers given in [7, 8] where k was a positive integer. We now introduce a further generalization of Fibonacci sequence as the *right k-Fibonacci sequence* $\{F_{k,n}^R\}$ using recurrence relation on one real parameter k given by

$$F_{k,n}^R = F_{k,n-1}^R + kF_{k,n-2}^R, \ n \ge 2$$
 where $F_{k,0}^R = 0$ and $F_{k,1}^R = 1$.

Some of the terms of this sequence are shown in the following table:

of the terms of this sequence are shown in the following table:	
n	$F_{k,n}^{R}$
0	0
1	1
2	1
3	1+k
4	1+2k
5	$1+3k+k^2$
6	$1+4k+3k^2$
7	$1 + 5k + 6k^2 + k^3$
8	$1 + 6k + 10k^2 + 4k^3$
9	$1 + 7k + 15k^2 + 10k^3 + k^4$
10	$1 + 8k + 21k^2 + 20k^3 + 5k^4$
11	$1 + 9k + 28k^2 + 35k^3 + 15k^4 + k^5$
12	$1 + 10k + 36k^2 + 56k^3 + 35k^4 + 6k^5$

13
$$1+11k+45k^{2}+84k^{3}+70k^{4}+21k^{5}+k^{6}$$
14
$$1+12k+55k^{2}+120k^{3}+126k^{4}+56k^{5}+7k^{6}$$
15
$$1+13k+66k^{2}+165k^{3}+210k^{4}+126k^{5}+28k^{6}+k^{7}$$
16
$$1+14k+78k^{2}+220k^{3}+330k^{4}+252k^{5}+84k^{6}+8k^{7}$$

If k = 1, this sequence is a classical Fibonacci sequence and for k = 2, we get classical Pell's sequence. In this paper we obtain some interesting identities whose corresponding counterpart is well-known in Fibonacci sequence.

2. Some basic identities:

Lemma 2.1:
$$gcd(F_{k,n}^R, F_{k,n+1}^R) = 1, \forall n = 0,1,2,3,\cdots$$

Proof: Suppose that $F_{k,n}^R$ and $F_{k,n+1}^R$ are both divisible by a positive integer d. Then clearly

$$F_{k,n+1}^R - F_{k,n}^R = F_{k,n}^R + kF_{k,n-1}^R - F_{k,n}^R = kF_{k,n-1}^R$$

will also be divisible by d. Then right hand side of this result is divisible by d. This gives $d \mid F_{k,n-1}^R$. Continuing this argument we see that $d \mid F_{k,n-2}^R$, $d \mid F_{k,n-3}^R$ and so on. Eventually, we must have $d \mid F_{k,1}^R$. Since $F_{k,1}^R = 1$ we get d = 1, which proves the required result.

We now find an expression for the sum of first *n* terms of this sequence.

Lemma 2.2
$$F_{k,1}^R + F_{k,2}^R + F_{k,3}^R + \dots + F_{k,n}^R = \frac{1}{k} (F_{k,n+2}^R - 1)$$
.

Proof: We have
$$F_{k,n}^R=F_{k,n-1}^R+kF_{k,n-2}^R,\ n\geq 2$$
. Replacing n by 2, 3, 4,... we get
$$F_{k,2}^R=F_{k,1}^R+kF_{k,0}^R$$

$$F_{k,3}^R = F_{k,2}^R + kF_{k,1}^R$$

$$F_{k,4}^R = F_{k,3}^R + kF_{k,2}^R$$

:

$$F_{k,n-2}^R = F_{k,n-3}^R + kF_{k,n-4}^R$$

$$F_{k,n-1}^{R} = F_{k,n-2}^{R} + kF_{k,n-3}^{R}$$
$$F_{k,n}^{R} = F_{k,n-1}^{R} + kF_{k,n-2}^{R}$$

Now adding all these equations term by term, we get

$$F_{k,2}^{R} + F_{k,3}^{R} + \dots + F_{k,n}^{R} = (F_{k,1}^{R} + F_{k,2}^{R} + \dots + F_{k,n-1}^{R}) + k(F_{k,0}^{R} + F_{k,1}^{R} + F_{k,2}^{R} + \dots + F_{k,n-2}^{R})$$

$$\therefore F_{k,n}^{R} - F_{k,1}^{R} = k(F_{k,0}^{R} + F_{k,1}^{R} + F_{k,2}^{R} + \dots + F_{k,n}^{R}) - k F_{k,n-1}^{R} - k F_{k,n}^{R}$$

$$\therefore k(F_{k,1}^{R} + F_{k,2}^{R} + \dots + F_{k,n}^{R}) = F_{k,n}^{R} + k F_{k,n-1}^{R} + k F_{k,n}^{R} - F_{k,1}^{R}$$

$$= F_{k,n+1}^{R} + k F_{k,n}^{R} - 1 = F_{k,n+2}^{R} - 1$$

$$\therefore F_{k,1}^R + F_{k,2}^R + F_{k,3}^R + \dots + F_{k,n}^R = \frac{1}{k} (F_{k,n+2}^R - 1)$$

Lemma 2.3 Sum of the first 2n right k - Fibonacci numbers is given by

$$F_{k,1}^R + F_{k,2}^R + F_{k,3}^R + \dots + F_{k,2n}^R = \frac{1}{k} (F_{k,2n+2}^R - 1).$$

Proof: We have $F_{k,n}^R = F_{k,n-1}^R + kF_{k,n-2}^R$, $n \ge 2$. Replacing n by 2, 3, 4,... we get

$$F_{k,2}^{R} = F_{k,1}^{R} + kF_{k,0}^{R}$$

$$F_{k,3}^{R} = F_{k,2}^{R} + kF_{k,1}^{R}$$

$$F_{k,4}^{R} = F_{k,3}^{R} + kF_{k,2}^{R}$$

$$\vdots$$

$$F_{k,2n-2}^{R} = F_{k,2n-3}^{R} + kF_{k,2n-4}^{R}$$

$$F_{k,2n-1}^{R} = F_{k,2n-2}^{R} + kF_{k,2n-3}^{R}$$

$$F_{k,2n}^{R} = F_{k,2n-1}^{R} + kF_{k,2n-2}^{R}$$

Now adding all these equations term by term, we get

$$F_{k,2}^R + F_{k,3}^R + \dots + F_{k,2n}^R = (1+k)(F_{k,1}^R + F_{k,2}^R + \dots + F_{k,2n-2}^R) + F_{k,2n-1}^R$$

$$F_{k,1}^R + F_{k,2}^R + \dots + F_{k,2n}^R = F_{k,1}^R + (1+k)(F_{k,1}^R + F_{k,2}^R + \dots + F_{k,2n}^R)$$
$$-(1+k)(F_{k,2n-1}^R + F_{k,2n}^R) + F_{k,2n-1}^R$$

$$k(F_{k,1}^R + F_{k,2}^R + \dots + F_{k,2n}^R) = F_{k,2n}^R + kF_{k,2n-1}^R + kF_{k,2n}^R - F_{k,1}^R$$
$$= F_{k,2n+1}^R + kF_{k,2n}^R - 1 = F_{k,2n+2}^R - 1$$

$$\therefore F_{k,1}^R + F_{k,2}^R + F_{k,3}^R + \dots + F_{k,2n}^R = \frac{1}{k} (F_{k,2n+2}^R - 1).$$

The following results follow immediately from above two lemmas.

Corollary 2.4
$$F_{k,n+2}^R \equiv 1 \pmod{n}$$
 and $F_{k,2n+2}^R \equiv 1 \pmod{n}$

We next find the sum of first n right k —Fibonacci numbers with only odd or even subscripts.

Lemma 2.5
$$F_{k,1}^R + F_{k,3}^R + F_{k,5}^R + \dots + F_{k,2n-1}^R = \frac{1}{k(2-k)} (F_{k,2n+2}^R - kF_{k,2n+1}^R + k - 1)$$
.

Proof: We have $F_{k,n}^R = F_{k,n-1}^R + kF_{k,n-2}^R$, $n \ge 2$. Replacing n by 3, 5, 7 ... we get

$$F_{k,3}^{R} = F_{k,2}^{R} + kF_{k,1}^{R}$$

$$F_{k,5}^{R} = F_{k,4}^{R} + kF_{k,3}^{R}$$

$$F_{k,7}^{R} = F_{k,6}^{R} + kF_{k,5}^{R}$$

:

$$F_{k,2n-1}^{R} = F_{k,2n-2}^{R} + kF_{k,2n-3}^{R}$$

Adding all these equations term by term and using Lemma: 2.3, we get

$$F_{k,1}^R + F_{k,3}^R + F_{k,5}^R + \dots + F_{k,2n-1}^R = F_{k,1}^R + (F_{k,2}^R + F_{k,4}^R + \dots + F_{k,2n-2}^R) + k(F_{k,1}^R + F_{k,3}^R + \dots + F_{k,2n-3}^R)$$

Page 29

$$(2(F_{k,1}^R + F_{k,3}^R + F_{k,5}^R + \dots + F_{k,2n-1}^R) = 1 + (F_{k,1}^R + F_{k,2}^R + \dots + F_{k,2n-1}^R + F_{k,2n}^R)$$

$$+ k(F_{k,1}^R + F_{k,3}^R + F_{k,5}^R + \dots + F_{k,2n-1}^R) - F_{k,2n}^R - kF_{k,2n-1}^R$$

$$\therefore (2-k)(F_{k,1}^R + F_{k,3}^R + F_{k,5}^R + \dots + F_{k,2n-1}^R) = 1 - (F_{k,2n}^R + kF_{k,2n-1}^R) + (F_{k,1}^R + F_{k,2}^R + \dots + F_{k,2n}^R)$$

$$\therefore (2-k)(F_{k,1}^R + F_{k,3}^R + F_{k,5}^R + \dots + F_{k,2n-1}^R) = 1 - F_{k,2n+1}^R + \frac{1}{k}(F_{k,2n+2}^R - 1)$$

$$\therefore F_{k,1}^R + F_{k,3}^R + F_{k,5}^R + \dots + F_{k,2n-1}^R = \frac{1}{k(2-k)} (F_{k,2n+2}^R - kF_{k,2n+1}^R + k - 1)$$

Lemma 2.6
$$F_{k,2}^R + F_{k,4}^R + F_{k,6}^R + \dots + F_{k,2n}^R = \frac{1}{k(2-k)} (F_{k,2n+2}^R - k^2 F_{k,2n}^R - 1)$$
.

Proof: We have $F_{k,n}^R = F_{k,n-1}^R + kF_{k,n-2}^R$, $n \ge 2$. Replacing n by 2, 4, 6, ... we get

$$F_{k,2}^{R} = F_{k,1}^{R} + kF_{k,0}^{R}$$

$$F_{k,4}^R = F_{k,3}^R + kF_{k,2}^R$$

$$F_{k,6}^{R} = F_{k,5}^{R} + kF_{k,4}^{R}$$

:

$$F_{k,2n}^{R} = F_{k,2n-1}^{R} + kF_{k,2n-2}^{R}$$

Adding all these equations term by term, we get

$$F_{k,2}^{R} + F_{k,4}^{R} + F_{k,6}^{R} + \dots + F_{k,2n}^{R} = (F_{k,1}^{R} + F_{k,3}^{R} + F_{k,5}^{R} + \dots + F_{k,2n-1}^{R})$$

$$+ k(F_{k,2}^{R} + F_{k,4}^{R} + F_{k,6}^{R} + \dots + F_{k,2n-2}^{R})$$

$$\therefore 2(F_{k,2}^{R} + F_{k,4}^{R} + F_{k,6}^{R} + \dots + F_{k,2n}^{R}) = (F_{k,1}^{R} + F_{k,2}^{R} + F_{k,3}^{R} + \dots + F_{k,2n}^{R})$$

$$+ k(F_{k,2}^{R} + F_{k,4}^{R} + F_{k,6}^{R} + \dots + F_{k,2n}^{R}) - kF_{k,2n}^{R}$$

$$\therefore (2-k)(F_{k,2}^R + F_{k,4}^R + F_{k,6}^R + \dots + F_{k,2n}^R) = (F_{k,1}^R + F_{k,2}^R + F_{k,3}^R + \dots + F_{k,2n}^R) - kF_{k,2n}^R$$

$$= \frac{1}{k}(F_{k,2n+2}^R - 1) - kF_{k,2n}^R$$

$$\therefore F_{k,2}^R + F_{k,4}^R + F_{k,6}^R + \dots + F_{k,2n}^R = \frac{1}{k(2-k)} (F_{k,2n+2}^R - k^2 F_{k,2n}^R - 1)$$

Now multiplication of two consecutive generalized Fibonacci numbers is given by following lemma.

Lemma 2.7
$$F_{k,n}^R F_{k,n+1}^R = F_{k,n}^{R \ 2} + kF_{k,n-1}^{R \ 2} + k^2F_{k,n-2}^{R \ 2} + \cdots + k^{n-1}F_{k,1}^{R \ 2} = \sum_{i=1}^n k^{n-i}F_{k,i}^{R \ 2}$$

Proof We have $F_{k,n}^R = F_{k,n-1}^R + kF_{k,n-2}^R$ and $F_{k,n+1}^R = F_{k,n}^R + kF_{k,n-1}^R$
 $F_{k,n}^R F_{k,n+1}^R = F_{k,n}^R (F_{k,n}^R + kF_{k,n-1}^R) = F_{k,n}^{R \ 2} + kF_{k,n-1}^R (F_{k,n-1}^R + kF_{k,n-2}^R)$
 $= F_{k,n}^{R \ 2} + kF_{k,n-1}^{R \ 2} + k^2F_{k,n-2}^R (F_{k,n-2}^R + kF_{k,n-3}^R)$
 $= F_{k,n}^{R \ 2} + kF_{k,n-1}^{R \ 2} + k^2F_{k,n-2}^{R \ 2} + \cdots + k^{n-1}F_{k,1}^R (F_{k,1}^R + F_{k,0}^R)$
 $= F_{k,n}^{R \ 2} + kF_{k,n-1}^{R \ 2} + k^2F_{k,n-2}^{R \ 2} + \cdots + k^{n-1}F_{k,1}^R (F_{k,1}^R + F_{k,0}^R)$
 $= F_{k,n}^{R \ 2} + kF_{k,n-1}^{R \ 2} + k^2F_{k,n-2}^{R \ 2} + \cdots + k^{n-1}F_{k,1}^{R \ 2} = \sum_{i=1}^n k^{n-i}F_{k,i}^{R \ 2}$

3. Some more identities for right k – Fibonacci numbers:

We now derive some more interesting identities for $F_{k,n}^R$.

Lemma 3.1
$$F_{k,m+n}^R = kF_{k,m-1}^R F_{k,n}^R + F_{k,m}^R F_{k,n+1}^R$$
.

Proof. Let m be the fixed positive integer. We proceed by inducting on n.

For
$$n = 1$$
, we have $F_{k,m+1}^R = kF_{k,m-1}^R F_{k,1}^R + F_{k,m}^R F_{k,2}^R$.

Since $F_{k,1}^R = F_{k,2}^R = 1$, we have $F_{k,m+1}^R = F_{k,m}^R + kF_{k,m-1}^R$, which is true. This proves the result for n = 1.

Now let us assume that the result is true for all integers up to some integer 't'.

Thus both
$$F_{k,m+t}^R = kF_{k,m-1}^RF_{k,t}^R + F_{k,m}^RF_{k,t+1}^R$$
 and $F_{k,m+(t-1)}^R = kF_{k,m-1}^RF_{k,t-1}^R + F_{k,m}^RF_{k,t}^R$ holds.

Now, from these two results we have

$$\begin{split} F_{k,\text{m}+t}^R + k F_{k,m+(t-1)}^R &= k F_{k,\text{m}-1}^R (F_{k,t}^R + k F_{k,t-1}^R) + F_{k,m}^R (F_{k,t+1}^R + k F_{k,t}^R) \\ &= k F_{k,\text{m}-1}^R F_{k,t+1}^R + F_{k,\text{m}}^R F_{k,t+2}^R \\ &= k F_{k,\text{m}-1}^R F_{k,t+1}^R + F_{k,\text{m}}^R F_{k,(t+1)+1}^R = F_{k,\text{m}+(t+1)}^R \;. \end{split}$$

which is obviously true. Thus by the principal of mathematical induction, the result is true for all positive integers n.

It is often useful to extend the sequence of right k- Fibonacci numbers backward with negative subscripts. In fact if we try to extend the right k- Fibonacci sequence back wards still keeping to the same rule, we get the following:

n	$F_{k,\mathrm{n}}^{R}$
-1	$\frac{1}{k}$
-2	$-\frac{1}{k^2}$
-3	$\frac{1+k}{k^3}$
-4	$-\frac{1+2k}{k^4}$
-5	$\frac{1+3k+k^2}{k^5}$
-6	$-\frac{1+4k+3k^2}{k^6}$
-7	$\frac{1 + 5k + 6k^2 + k^3}{k^7}$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

$$-8 \qquad \qquad -\frac{1+6k+10k^2+4k^3}{k^8}$$

Thus the sequence of right k – Fibonacci numbers is a bilateral sequence, since it can be extended infinitely in both directions. From this table and from the table of values of $F_{k,n}^R$, the following result follows immediately.

Lemma 3.2:
$$F_{k,-n}^R = \frac{(-1)^{n+1}}{k^n} F_{k,n}^R, n \ge 1$$
.

We now obtain the extended d'Ocagne's Identity for this sequence.

Lemma 3.3:
$$F_{k,m-n}^R = \frac{(-1)^n}{k^n} \left(F_{k,m}^R F_{k,n+1}^R - F_{k,m+1}^R F_{k,n}^R \right).$$

Proof: Replacing n by -n in Lemma 3.1, we get

$$F_{k,m-n}^{R} = kF_{k,m-1}^{R}F_{k,-n}^{R} + F_{k,m}^{R}F_{k,-n+1}^{R}$$
.

Using the definition of left k – Fibonacci sequence and Lemma 3.2, we get

$$F_{k,m-n}^{R} = kF_{k,m-1}^{R} \frac{(-1)^{n+1}}{k^{n}} F_{k,n}^{R} + F_{k,m}^{R} \frac{(-1)^{n}}{k^{n-1}} F_{k,n-1}^{R}$$

$$= \frac{(-1)^{n}}{k^{n-1}} (F_{k,m}^{R} F_{k,n-1}^{R} - F_{k,m-1}^{R} F_{k,n}^{R})$$

$$= \frac{(-1)^{n}}{k^{n-1}} [F_{k,m}^{R} \frac{1}{k} (F_{k,n+1}^{R} - F_{k,n}^{R}) - \frac{1}{k} (F_{k,m+1}^{R} - F_{k,m}^{R}) F_{k,n}^{R}]$$

$$\therefore F_{k,m-n}^{R} = \frac{(-1)^{n}}{k^{n}} (F_{k,m}^{R} F_{k,n+1}^{R} - F_{k,m+1}^{R} F_{k,n}^{R}).$$

We next prove the divisibility property for $F_{k,n}^R$.

Lemma 3.4: $F_{k,m}^R \mid F_{k,mn}^R$; for any non-zero integers m and n.

Proof: Let m be any fixed positive integer. We proceed by inducting on n.

For n=1, we have $F_{k,m}^R \mid F_{k,m}^R$, which is obvious. This proves the result for n=1.

Now suppose the result is true for all integers n up to some integer 't'. i.e. we assume that $F_{k,m}^R \mid F_{k,mt}^R$ Then $F_{k,m(t+1)}^R = F_{k,mt+m}^R = kF_{k,mt-1}^R F_{k,m}^R + F_{k,mt}^R F_{k,m+1}^R$.

But by assumption, we have $F_{k,m}^R \mid F_{k,mt}^R$. Thus $F_{k,m}^R$ divides the entire right side of the above equation. Hence $F_{k,m}^R \mid F_{k,m(t+1)}^R$, which proves the result for all positive integers n.

Note: By Lemma 3.2 it is obvious that the above divisibility criterion holds for negative values of n also.

Lemma 3.5
$$F_{k,n}^{R^2} + \frac{1}{k} F_{k,n+1}^{R^2} = \frac{1}{k} F_{k,2n+1}^{R}$$
.

Proof: Here also we use the principal of mathematical induction.

For
$$n=1$$
, we have $F_{k,1}^{R2} + \frac{1}{k} F_{k,2}^{R2} = 1 + \frac{1}{k} = \frac{1}{k} (1+k) = \frac{1}{k} F_{k,3}^{R}$.

This proves the result for n = 1.

We assume that it is true for all integers up to some positive integer 't'.

$$F_{k,t}^{R2} + \frac{1}{k} F_{k,t+1}^{R2} = \frac{1}{k} F_{k,2t+1}^{R}$$
 holds by assumption.

Now
$$F_{k,t+1}^{R-2} + \frac{1}{k} F_{k,t+2}^{R-2} = F_{k,t+1}^{R-2} + \frac{1}{k} (F_{k,t+1}^{R} + k F_{k,t}^{R})^{2}$$

$$= F_{k,t+1}^{R-2} + \frac{1}{k} (F_{k,t+1}^{R-2} + 2k F_{k,t}^{R} F_{k,t+1}^{R} + k^{2} F_{k,t}^{R2})$$

$$= F_{k,t+1}^{R-2} + k F_{k,t}^{R-2} + \frac{1}{k} (F_{k,t+1}^{R-2} + k F_{k,t}^{R} F_{k,t+1}^{R} + k F_{k,t}^{R} F_{k,t+1}^{R})$$

$$= k (F_{k,t}^{R-2} + \frac{1}{k} F_{k,t+1}^{R-2}) + \frac{1}{k} [F_{k,t+1}^{R} (F_{k,t+1}^{R} + k F_{k,t}^{R}) + k F_{k,t}^{R} F_{k,t+1}^{R}]$$

$$= k (\frac{1}{k} F_{k,2t+1}^{R}) + \frac{1}{k} [F_{k,t+1}^{L} F_{k,t+2}^{L} + k F_{k,t}^{L} F_{k,t+1}^{L}]$$

$$= F_{k,2t+1}^{R} + \frac{1}{k} (k F_{k,t}^{R} F_{k,t+1}^{R} + F_{k,t+1}^{R} F_{k,t+2}^{R})$$

$$= F_{k,2t+1}^{R} + \frac{1}{k} F_{k,t+1+t+1}^{R} = \frac{1}{k} F_{k,2t+3}^{R} = F_{k,2(t+1)+1}^{R}$$

This proves the result by induction.

Now, we derive a result which connects three consecutive right k- Fibonacci numbers with odd subscript.

Lemma 3.6
$$F_{k,2n+5}^R - (2k+1)F_{k,2n+3}^R + k^2F_{k,2n+1}^R = 0$$

Proof By definition

$$F_{k,2n+5}^R = F_{k,2n+4}^R + kF_{k,2n+3}^R = (F_{k,2n+3}^R + kF_{k,2n+2}^R) + kF_{k,2n+3}^R$$
$$= (k+1)F_{k,2n+3}^R + kF_{k,2n+2}^R.$$

Now
$$F_{k,2n+5}^R - (2k+1)F_{k,2n+3}^R + k^2F_{k,2n+1}^R$$

$$= (k+1)F_{k,2n+3}^R + kF_{k,2n+2}^R - (2k+1)F_{k,2n+3}^R + k^2F_{k,2n+1}^R$$

$$= (k+1)F_{k,2n+3}^R - (2k+1)F_{k,2n+3}^R + k(F_{k,2n+2}^R + kF_{k,2n+1}^R)$$

$$= (k+1)F_{k,2n+3}^R - (2k+1)F_{k,2n+3}^R + kF_{k,2n+3}^R = 0$$

We finally prove the analogous of one of the oldest identities involving the Fibonacci numbers - Cassini's identity, which was discovered in 1680 by a French astronomer Jean – Dominique Cassini.

Lemma 3.7
$$F_{k,n+1}^R . F_{k,n-1}^R - F_{k,n}^{R} = (-1)^n . k^{n-1}$$
.

Proof: We have
$$F_{k,n+1}^R ext{.} F_{k,n-1}^R - F_{k,n}^{R \ 2} = (F_{k,n}^R + k F_{k,n-1}^R) F_{k,n-1}^R - F_{k,n}^{R \ 2}$$

$$= F_{k,n}^R F_{k,n-1}^R - F_{k,n}^{R \ 2} + k F_{k,n-1}^{R \ 2}$$

$$= F_{k,n}^R (F_{k,n-1}^R - F_{k,n}^R) + k F_{k,n-1}^{R \ 2}$$

$$= F_{k,n}^R (-k F_{k,n-2}^R) + k F_{k,n-1}^{R \ 2}$$

$$= -k (F_{k,n}^R F_{k,n-2}^R - F_{k,n-2}^R)$$

Repeating the same process successively for right side, we get

$$F_{k,n+1}^R F_{k,n-1}^R - F_{k,n}^{R 2} = (-k)^2 (F_{k,n-1}^R F_{k,n-3}^R - F_{k,n-2}^{R 2})$$

$$= (-k)^n (F_{k,1}^R F_{k,n-1}^R - F_{k,0}^{R 2})$$

$$= (-k)^{n} (1 \cdot \frac{1}{k} - 0) = (-1)^{n} \cdot k^{n-1}$$

 $F_{k,1}^{R} = 1, F_{k,0}^{R} = 0, F_{k,-1}^{R} = \frac{1}{k}$ since the value of

$$\therefore F_{k,n+1}^R . F_{k,n-1}^R - F_{k,n}^{R}^2 = (-1)^n . k^{n-1}$$

Lemma 3.8
$$F_{k,n}^R - c^{n-1} = (1-c)F_{k,n-1}^R + [(1-c)c + k][F_{k,0}^R c^{n-2} + F_{k,1}^R c^{n-3} + \dots + F_{k,n-2}^R]$$

where c = 1

Proof We prove this result by the principal of mathematical induction.

For
$$n = 2$$
, we have $F_{k,2}^R - c = (1-c)F_{k,1}^R + [(1-c)c + k]F_{k,0}^R$ which gives $1-c = 1-c$.

This proves the result for n = 2.

We assume that it is true for all integers up to some positive integer t.

$$F_{k,t}^{R} - c^{t-1} = (1-c)F_{k,t-1}^{R} + [(1-c)c + k][F_{k,0}^{R}c^{t-2} + F_{k,1}^{R}c^{t-3} + \dots + F_{k,t-2}^{R}], c = 1$$

To prove the result is true for n = t + 1.

Now
$$RHS = (1-c)F_{k,t}^R + [(1-c)c + k][F_{k,0}^R c^{t-1} + F_{k,1}^R c^{t-2} + \dots + F_{k,t-1}^R]$$

=
$$(1-c)F_{k,t}^R$$
 + $[(k-c)c+1][F_{k,t-1}^R + cF_{k,t-2}^R + c^2F_{k,t-3}^R + \cdots + c^{t-2}F_{k,1}^R + c^{t-1}F_{k,0}^R]$

$$= (F_{k,t}^R + kF_{k,t-1}^R) - cF_{k,t}^R + k(cF_{k,t-2}^R + c^2F_{k,t-3}^R + \dots + c^{t-1}F_{k,0}^R)$$

$$+ c(F_{k,t-1}^R + cF_{k,t-2}^R + \dots + c^{t-2}F_{k,1}^R + c^{t-1}F_{k,0}^R)$$

$$-c^{2}F_{k,t-1}^{R}-c^{3}F_{k,t-2}^{R}-\cdots-c^{t-1}F_{k,1}^{R}-c^{t}F_{k,1}^{R}$$

$$= F_{k,t+1}^R - cF_{k,t}^R + c(F_{k,t-1}^R + kF_{k,t-2}^R) + c^2(F_{k,t-2}^R + kF_{k,t-3}^R) + \dots + c^{t-1}(F_{k,1}^R + kF_{k,0}^R)$$

$$-c^2 F_{k,t-1}^R - c^3 F_{k,t-2}^R - \dots - c^{t-1} F_{k,2}^R - c^k = F_{k,t+1}^R - c^t.$$

$$\therefore F_{k,t+1}^R - c^t = (1-c)F_{k,t}^R + [(1-c)c + k][F_{k,0}^R c^{t-1} + F_{k,1}^R c^{t-2} + \dots + F_{k,t-1}^R]$$

The result is true for n = t + 1. This proves the result by induction.

Note: If we take
$$c = 1$$
 in this result, we have $F_{k,n}^R = 1 + k \sum_{i=1}^{n-2} F_{k,i}^R$.

Robinson [17] used the matrices to discover facts about the Fibonacci sequence. We now demonstrate a close link between matrices and right k- Fibonacci numbers. We define an important 2×2 matrices as follow, which plays a significant role in discussions concerning right k- Fibonacci sequence.

Lemma 3.9 If
$$U = \begin{bmatrix} 0 & k \\ 1 & 1 \end{bmatrix}$$
 then $U^n = \begin{bmatrix} kF_{k,n-1}^R & kF_{k,n}^R \\ F_{k,n}^R & F_{k,n+1}^R \end{bmatrix}$

Proof: We will prove this result by using principal of mathematical induction,

for
$$n=1$$
, we have $U = \begin{bmatrix} kF_{k,0}^R & kF_{k,1}^R \\ F_{k,1}^R & F_{k,2}^R \end{bmatrix} = \begin{bmatrix} 0 & k \\ 1 & 1 \end{bmatrix}$

The result is proved for n = 1.

Suppose it is true for
$$n = t$$
. i.e. $U^t = \begin{bmatrix} kF_{k,t-1}^R & kF_{k,t}^R \\ F_{k,t}^R & F_{k,t+1}^R \end{bmatrix}$

Now
$$U^{t+1} = U^t U = \begin{bmatrix} kF_{k,t-1}^R & kF_{k,t}^R \\ F_{k,t}^R & F_{k,t+1}^R \end{bmatrix} \begin{bmatrix} 0 & k \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} kF_{k,t}^R & kF_{k,t}^R + k^2F_{k,t-1}^R \\ F_{k,t+1}^R & F_{k,t+1}^R + kF_{k,t}^R \end{bmatrix}$$

$$= \begin{bmatrix} kF_{k,t}^R & kF_{k,t+1}^R \\ F_{k,t+1}^R & F_{k,t+2}^R \end{bmatrix}$$

Thus the result is true for n = t + 1. This proves the result by induction.

Lemma: 3.8 can be prove by using matrix, We have, $U = \begin{bmatrix} 0 & k \\ 1 & 1 \end{bmatrix}$ then |U| = -k

also
$$U^{n} = \begin{bmatrix} kF_{k,n-1}^{R} & kF_{k,n}^{R} \\ F_{k,n}^{R} & F_{k,n+1}^{R} \end{bmatrix}$$
 then $|U^{n}| = kF_{k,n-1}^{R}F_{k,n+1}^{R} - kF_{k,n}^{R}$

$$\therefore |U^n| = k \left[F_{k,n-1}^R F_{k,n+1}^R - F_{k,n}^{R 2} \right] \qquad \therefore (-k)^n = k \left[F_{k,n-1}^R F_{k,n+1}^R - F_{k,n}^{R 2} \right]$$

$$\therefore F_{k,n-1}^R F_{k,n+1}^R - F_{k,n}^{R} = (-1)^n k^{n-1}.$$

Acknowledgement: This work has been supported in part by UGC Minor Project number F. 47-901/14 (WRO) from Ministry of Human resource Development, Govt. of India.

References:

- [1] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
- [2] A. F. Horadam, A generalized Fibonacci sequence, Amer. Math. Monthly 68(1961), 455-459.
- [3] D. V. Jaiswal, On a generalized Fibonacci sequence, Labdev J. Sci. Tech. Part A 7(1969), 67-71.
- [4] S. T. Klein, Combinatorial representation of generalized Fibonacci numbers, Fibonacci Quart. 29 (1991) 124-131.
- [5] J. C. Pond, Generalized Fibonacci Summations, Fibonacci Quart. 6 (1968), 97-108.
- [6] J. E. Walton, A. F. Horadam, Some further identities for the generalized Fibonacci sequence $\{H_n\}$, Fibonacci Quart. 12(1974), 272-280.
- [7] S. Falcon, A. Plaza, *The k Fibonacci sequence and the Pascal 2-triangle*, Chaos, Solutions & Fractals (2006), doi:10.1016/j.chaos.2006.10.022.
- [8] A. T. Krassimir, A. C. Liliya, S. D. Dimitar, A new perspective to the generalization of the Fibonacci sequence, Fibonacci Quart.23(1985), no. 1, 21-28.
- [9] G. Y. Lee, S. G. Lee, H. G. Shin, On the k-generalized Fibonacci matrix Qk, Linear Algebra Appl. 251(1997), 73-88.
- [10] G. Y. Lee, S. G. Lee, J. S. Kim, H. K. Shin, The Binet formula and representations of k-generalized Fibonacci numbers, Fibonacci Quart. 39(2001), no. 2, 158-164.
- [11] S. P. Pethe, C. N. Phadte, A generalization of the Fibonacci sequence. Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), 465-472.
- [12] G. Sburlati, Generalized Fibonacci sequences and linear congruences, Fibonacci Quart. 40 (2002), 446-452.

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT VOLUME-2, ISSUE-4 (April 2015) ISSN: (2349-0322)

- [13] L. J. Zai, L.J. Sheng, Some properties of the generalization of the Fibonacci sequence, Fibonacci Quart. 25(1987), no. 2, 111-117.
- [14] Marcia Edson, Omer Yayenie, A new generalization of Fibonacci Sequence and Extended Binet's Formula.
- [15] D. M. Diwan, D. V. Shah, Explicit and recursive formulae for the class of generalized Fibonacci sequence, Proceedings of 19th annual cum 4th International Conference of Gwalior Academy of Mathematical Sciences, Oct 2014, 104-108.
- [16] Vandana Patel, D. V. Shah, Generalized Fibonacci sequence and its properties, International Journal of Physics and Mathematical Science, Vol. 4(2), April-June 2014, 118-124.
- [17] Robinson D. W.: The Fibonacci matrix modulo m, The Fibonacci Quarterly, 1(1963), 29-36.