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ABSTRACT 

 

This paper uses the definition of a paranormed   space to determine the necessary and 

sufficient conditions for a sequence (        of continuous linear functionals to be in the 

spaces       and       for each   belonging to a paranormed   space. It is observed that 

the work fills a gap in the existing literature. 

Mathematics Subject Classification: 40H05, 46A45, 47B07  

Key Words: Paranorm, Paranormed   spaces, Matrix transformation, Kőthe-Toeplitz dual. 

  1.    Introduction 

 A paranormed space       whose topology is generated by a paranorm   is a 

topological linear space, where    is a real subadditive function on   which satisfies        

      ,           ,                 ,        , and such that 

multiplication is continuous.   is the zero sequence in   and by continuity of multiplication 

we mean if      is a sequence of scalars with      and      is a sequence of vectors with 

         , then                A paranorm is said to be total if        implies 

     

 A paranormed   space is defined in Maddox [1] and is captured as follows: Let 

     be a sequence of subsets of   such that      and such that if          then    

                 then      is called an   space in  . If       
     where      is an  

  sequence in   and each    is nowhere dense in  , then   is called an   space. 
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Otherwise X is called a   space. It is clear then that every   space is of the first category,  

whence we see that any complete paranormed space is a   space. This definition is a 

generalization of the definition of Sargent [2]. 

 Let         be an infinite matrix of complex numbers                 and 

    be two nonempty subsets of the space   of all complex sequences. The matrix   is said 

to define a matrix transformation from   into   and written       if for every   

       and every integer   we have  

                                     
 
   . 

If the sequence            exists, then it is called the transformation of   by the matrix  . 

Further,         if and only if     , whenever      where the pair       denotes the 

class of matrices  . For different sets of spaces X and Y, the necessary and sufficient 

conditions have been established for a sequence A to be in the class (X, Y). 

For a sequence of positive numbers                , denoting by       the 

totality of             for which        
      

    was first considered by Halperin 

and Nakano [3]. Simons [4] considered the case         and defined 

                                                        
      

     

where   is the set of all real or complex sequences     ; and proved that the set       is a 

linear space under the coordinate-wise definitions of addition and scalar multiplication. He 

further proved that it is complete linear topological space. 

 For the case sup    , it was shown in Maddox [5] that       is a linear space and 

further shown to be a paranormed sequence space in the most general case when    O(1), 

see [6]. 

 For      the space        is defined by 

                                            
          

   ,  

It was also mentioned that this space is paranormed by 
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whenever      by Bulut-Çakar [7]; and they further observed that  

                                        
           

    

is a special case of        corresponding to     and that            .  

 Our sequence space of interest namely: 

                                               
          

      

for bounded sequence        of strictly positive numbers and        any fixed sequence 

of non-zero complex numbers such that                 
 

           , is defined in 

Bilgin [8]. When           and      for every    , the space          becomes the 

space       of Maddox [5]. 

 The space          is complete in its topology paranormed by 

                                                                 
     

   
   

 

where             with         .  Thus, it is also a    space, since, it is well 

known that every complete paranormed space is   . The space has        as basis, where 

     is a sequence with 1 in the kth place and zero elsewhere. 

 Let   be a nonempty subset of    Then     denotes the generalized Kőthe-Toeplitz 

dual of   defined by 

                              
 
    converges for every    } 

 It was further observed in Lascarides [9] that Kőthe-Toeplitz duality possesses the 

following features: 

(i)    is a linear subspace of   for every    . 

(ii)     implies       for every      . 

(iii)             for every    . 

(iv)      
     

  for every family {     with       and    . 

Any subset   of   is perfect or   is perfect or Kőthe-Toeplitz reflexive if and only if 

     .  For instance    is perfect for every  ; and that if   is perfect then it is a linear 
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space. Further, if    , and   is a Kőthe space, the   solid; and if   is solid then    

      are the       and    duals of  , respectively. That   is solid or total means 

when     and                      together imply    , (see Maddox [10]. 

 Let      denote the set        , we state its generalized Kőthe-Toeplitz dual       

as well as its continuous dual. To do this, we need some working lemmas.  So, let        

denote a sequence of strictly positive real numbers. If   is bounded with                 

then                  ,                   and                , (see Maddox 

[6]). 

Lemma 1(Theorem 1 [11]): Let   be a paranormed space and let      be a sequence of 

elements of   , and suppose also that   is bounded. Then 

(i)                    for some     implies 

(ii)                for every       

and the converse is truee if   is a   space. 

Lemma 2 (Theorem 2, [11]): Let   be a paranormed space and let      be a sequence of 

elements of     

 (1) If   has a fundamental set   and if   is bounded, then the following propositions 

            (iii)                    for any    , 

(iv)                               ,  

together imply 

            (v)                      for every      

(2)  If             then (iv) implies (v) 

(3)  Let   be a   space, then (v) implies (iv) even if   is unbounded. 

Lemma 3 (Theorem 3 [7]):  

(i) If                , fot each     then               if and only    

if there exists an integer D > 1 such that 



INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT 

VOLUME-2, ISSUE-4 (April 2015)                                                              ISSN: (2349-0322) 



  A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

         International Research Journal of Mathematics, Engineering & IT (IRJMEIT)  

                  Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia     

   Page 18 

                               
                 

                                             (1) 

(ii)  If                 for each   , then  

                                                 
                                   (2) 

Lemma 4 (Theorem 4 [7]):  

(i)  If                , fot each     then              if and only       

if together with (1) the condition  

                                fixed                       (3)  

       holds. 

(ii) If                 for each   , then              if and only if 

the conditions (2) and (3) hold.   

Lemma 5 (Lemma 2.2 [8])  

(a)      If               and   
     

    ,            then  

                                       and           is isomorphic to        , where 

                                             
                               

   . 

          (b)    If             , then             
       and           is isomorphic     

to        , where 

                                     
                         

                 

Lemma 6 (Theorem 2 [7]:   

(i) If                , fot each     then        , i.e. the continuous 

dual of        is isomorphic to E (p, s), which is defined as 

                                            
       

                             

(ii) If                 for each   , then         is isomorphic to 

m(p,s), which is defined as 
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                                             m                     
      

                               (4) 

2. Main Results 

Let        be a sequence of strictly positive real numbers, define        as 

  
     

        then for   and        of any fixed sequence of non-zero complex 

numbers, we shall prove the following two results to characterize the classes 

                                    for both the cases        and       . 

Theorem A:  

(i) Let       ,   
     

     for every  , and let   be bounded. Then                        

                  if and only if  

                       
          

                              (5) 

(ii) Suppose               ,   
     

     for each    ; and let   be 

bounded. Then,                  , if and only if 

                                                  
                           (6) 

Proof: (i) Let                  . Then for each  ,                         
      . 

Also, by lemma 5              for each    . We show that 

                  
              , for all     such that         is defined. To do this, 

choose any    . Now, if   is such that, for some sequence        of integers 

            
                for each    , then by defining 

                                                              
           ,         

it follows that         is defined. Since                       there is an integer      

such that 

                                 
                  

Now choose       Using                  
         since                  

    

     and since           we have: 
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    , 

whence 

                                                       
           

     

Given     we can choose an     such that 

            
         

            
       

Define                    
          Then we have           and 

                                                     
            

       

whence, 

                                 
            

     

 Since         is complete paranormed space, by Lemma 2 it is a   space; and thus 

by Lemma 1we must have (5) holding. 

 Conversely, let (5) hold. Then again it follows that for each                   with   

                  
                   such that         is defined. And using Lemma 1 

we must have that the sequence                

(ii) For each    , define    by  

                                        , 

For sufficiency, let (6) hold. Then if           we have for each  , assuming        , 
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which implies                     

 For necessity, let                    Then                       for each   

and so, by Lemma 5(i) and lemma 6,                  . Therefore, by Lemma 1 there 

exists     and     such that          
        and           with           

Thus, 

                     |             
                    if            

      Now, write     
 

 

        
     and choose any          . By the continuity of scalar 

multiplication on        , there is a      such that            , whence    

                   |             
              

Thus, we see that                and so there exists     such that  

                                                
            

Writing      and using the fact that          we obtain (6). 

Theorem B: (i) Suppose       ,   
     

     for every     and   be bounded. 

Then                   if and only if 

                 
                 for each    ,                                       (7)     

                                     
          

                                                   (8) 

(ii) Let       ,   
     

     for every     and   be bounded. Then   

                if and only if (7) holds and for each      

                                                                  
                                  (9) 
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Proof: (i) Let                  . Since                               then as in the 

preceding theorem we must have              and 

                                         
            

           

whenever         is defined, for each      Then by Lemma 2 part 3, (5) must hold. (4) is 

easily obtained since                for each           . 

Conversely, if (7) and (8) hold we can show that             , with 

                                          
            

           

whenever         is defined, for each      also        is a basis in        . Then Theorem 

A(i) implies that                  . 

(ii) Define    by  

                                            

on         for each      and consider the proof of necessity. Thus, let 

                 . Obviously we have (4) as in Theorem A(ii) and we see that    

            . If                    then 

                                                      
                          

So, it is enough to show that (9) holds for    . Since             and using Lemma 3 

(i), there exists     such that  

                                                   
 

 

       
                     

Choose any  , and define  

                                  
   

  
 

 

           
          

                             

Then, 
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                                                            . 

And, 

                         
          

  
   

   
  

                                                         
                     

                  
     

                                                     

whence            for each  . By Lemma 2b (1) we must have 

                     
      whence (y) holds with      

 Sufficiency: Let (11) and (9) hold        It follows that                   . 

Since        is a basis in         and using Lemma 2 b(1) it is enough to show that 

                     
       

 Now choose     such that       and      . There exists     and   such 

that  

                                            
       

   
 

 
          

Then if          and        we have 

                
             

                           
             

   

                                     
                                  

         
      

                                     
       

  
                          

 
 

             

                                   
 

 

            

                               

which completes the proof. 
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Conclusion: These characterizations are generalizations of Bilgin (see [8]) and fill the gap in 

the existing literature. The results obtained here also throw light on the ways for further 

generalizations.  
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