CHARACTERIZATIONS OF INFINITE MATRICES ON SOME PARANORMED β –SPACES

Zakawat U. Siddiqui* and Ahmadu Kiltho

Department of Mathematics and Statistics, University of Maiduguri, Borno State, Nigeria

ABSTRACT

This paper uses the definition of a paranormed β -space to determine the necessary and sufficient conditions for a sequence (($A_n(x)$) of continuous linear functionals to be in the spaces $l_{\infty}(q)$ and $c_0(q)$ for each x belonging to a paranormed β -space. It is observed that the work fills a gap in the existing literature.

Mathematics Subject Classification: 40H05, 46A45, 47B07

Key Words: Paranorm, Paranormed β –spaces, Matrix transformation, Köthe-Toeplitz dual.

1. Introduction

A paranormed space (X, g) whose topology is generated by a paranorm g is a topological linear space, where g is a real subadditive function on X which satisfies $(\theta) = 0$, $g(x) \ge 0$, g(-x) = g(x), $g(x + y) \le g(x) + g(y)$, $\forall x, y \in X$, and such that multiplication is continuous. θ is the zero sequence in X and by continuity of multiplication we mean if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ and (x_n) is a sequence of vectors with $g(x_n - x) \to 0$, then $g(\lambda_n x_n - \lambda x) \to 0$. A paranorm is said to be total if g(x) = 0 implies $x = \theta$.

A paranormed β –space is defined in Maddox [1] and is captured as follows: Let (X_n) be a sequence of subsets of X such that $\theta \in X_1$ and such that if $x, y \in X_n$ then $x \pm y \in X_{n+1} \forall n \in N$; then (X_n) is called an α –space in X. If $X = \bigcup_{n=1}^{\infty} X_n$, where (X_n) is an α –sequence in X and each X_n is nowhere dense in X, then X is called an α –space.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com, editor@aarf.asia

Otherwise X is called a β –space. It is clear then that every α –space is of the first category,

whence we see that any complete paranormed space is a β –space. This definition is a generalization of the definition of Sargent [2].

Let $A = (a_{nk})$ be an infinite matrix of complex numbers a_{nk} (n, k = 1, 2, ...) and X, Y be two nonempty subsets of the space ω of all complex sequences. The matrix A is said to define a matrix transformation from X into Y and written $A : X \to Y$ if for every $x = (x_k) \in X$ and every integer n we have

$$A_n(x) = \sum_{k=1}^{\infty} a_{nk} x_k.$$

If the sequence $Ax = (A_n(x))$ exists, then it is called the transformation of x by the matrix A. Further, $A \in (X, Y)$ if and only if $Ax \in Y$, whenever $x \in X$; where the pair (X, Y) denotes the class of matrices A. For different sets of spaces X and Y, the necessary and sufficient conditions have been established for a sequence A to be in the class (X, Y).

For a sequence of positive numbers $p_k < 1$ (k = 1, 2, ...), denoting by $l(p_k)$ the totality of $x = (x_1, x_2, ...)$ for which $\sum_{k=1}^{\infty} |x_k|^{p_k} < +\infty$ was first considered by Halperin and Nakano [3]. Simons [4] considered the case $0 < p_k \le 1$ and defined

$$l(p_k) = \{ x = (x_k) \in \omega : \sum_{k=1}^{\infty} |x_k|^{p_k} < \infty \}$$

where ω is the set of all real or complex sequences (x_k) ; and proved that the set $l(p_k)$ is a linear space under the coordinate-wise definitions of addition and scalar multiplication. He further proved that it is complete linear topological space.

For the case $\sup p_k < \infty$, it was shown in Maddox [5] that $l(p_k)$ is a linear space and further shown to be a paranormed sequence space in the most general case when $p_k = O(1)$, see [6].

For $p_k > 0$ the space l(p, s) is defined by

$$l(p,s) = \{x = (x_k) \in \omega : \sum_{k=1}^{\infty} k^{-s} |x_k|^{p_k} < \infty, s \ge 0\},\$$

It was also mentioned that this space is paranormed by

$$g(x) = (\sum_k k^{-s} |x_k|^{p_k})^{1/M}$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

whenever $p \in l_{\infty}$ by Bulut-Çakar [7]; and they further observed that

$$l(p_k) = \{x = (x_k) \in \omega : \sum_{k=1}^{\infty} |x_k|^{p_k} < \infty, \ p_k > 0\}$$

is a special case of l(p, s) corresponding to s = 0 and that $l(p, s) \supset l(p)$.

Our sequence space of interest namely:

$$l^{\nu}(p,t) = \{x = (x_x) \in \omega : \sum_{k=1}^{\infty} k^{-t} | x_k v_k |^{p_k} < \infty, t \ge 0\}$$

for bounded sequence $p = (p_k)$ of strictly positive numbers and $v = (v_k)$ any fixed sequence of non-zero complex numbers such that $\lim_{k\to\infty} \inf |v_k|^{\frac{1}{k}} = \rho$ ($0 < \rho < \infty$), is defined in Bilgin [8]. When t = 0, $v_k = 1$ and $p_k = 1$ for every $k \in N$, the space $l^v(p, t)$ becomes the space $l(p_k)$ of Maddox [5].

The space $l^{\nu}(p, t)$ is complete in its topology paranormed by

$$g(x) = \left(\sum_{k=1}^{\infty} k^{-t} |x_k v_k|^{p_k}\right)^{1/M}$$

where $M = \max(1, H)$ with $H = \sup_k p_k$. Thus, it is also a BK-space, since, it is well known that every complete paranormed space is BK. The space has $(e^{(k)})$ as basis, where $e^{(k)}$ is a sequence with 1 in the kth place and zero elsewhere.

Let *E* be a nonempty subset of ω . Then E^+ denotes the generalized Kőthe-Toeplitz dual of *E* defined by

$$E^+ = \{(a_k) \in \omega : \sum_{k=1}^{\infty} a_k x_k \text{ converges for every } x \in E\}$$

It was further observed in Lascarides [9] that Kőthe-Toeplitz duality possesses the following features:

(i) E^+ is a linear subspace of ω for every $E \subset \omega$.

(ii)
$$E \subset Y$$
 implies $E^+ \supset Y^+$ for every $E, Y \subset \omega$.

(iii)
$$E^{++} = (E^+)^+ \supset E$$
 for every $E \subset \omega$.

(iv) $(\bigcup E_i)^+ = \bigcap E_i^+$ for every family $\{E_i\}$ with $E_i \subset \omega$ and $i \in N$.

Any subset *E* of ω is perfect or ω is perfect or Köthe-Toeplitz reflexive if and only if $E^{++} = E$. For instance E^+ is perfect for every *E*; and that if *E* is perfect then it is a linear

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com, editor@aarf.asia

space. Further, if $E \subset \omega$, and *E* is a Kőthe space, the *E* solid; and if *E* is solid then $E^{\alpha} = E^{\beta} = E^{\gamma}$ are the $\alpha - \beta$ and $\gamma - \beta$ duals of *E*, respectively. That *E* is solid or total means when $x \in E$ and $|y_k| \leq |x_k|$, $\forall k \in N$ together imply $y \in E$, (see Maddox [10].

Let E(p) denote the set $l^{\nu}(p, t)$, we state its generalized Köthe-Toeplitz dual $E^{+}(p)$ as well as its continuous dual. To do this, we need some working lemmas. So, let $q = (q_n)$ denote a sequence of strictly positive real numbers. If q is bounded with $H = \max(\sup q_n, 1)$ then $c_0(q, t) = c_0(H/q, t)$, $l_{\infty}(q, t) = l_{\infty}(H/q, t)$ and c(q, t) = c(H/q, t), (see Maddox [6]).

Lemma 1(Theorem 1 [11]): Let X be a paranormed space and let (A_n) be a sequence of elements of X^* , and suppose also that q is bounded. Then

- (i) $\sup_{n} (||A_n||_M)^{q_n} < \infty$ for some M > 1 implies
- (ii) $(A_n(x)) \in l_{\infty}(q)$ for every $x \in X$,

and the converse is true if X is a β –space.

Lemma 2 (Theorem 2, [11]): Let X be a paranormed space and let (A_n) be a sequence of elements of X^* .

(1) If X has a fundamental set G and if q is bounded, then the following propositions

(iii)
$$(A_n(b)) \in c_0(q)$$
 for any $b \in G$,

(iv) $\lim_{M} \limsup_{n \in \mathbb{N}} (||A_n||_M)^{q_n} = 0,$

together imply

(v)
$$(A_n(x)) \in c_0(q)$$
 for every $x \in X$.

(2) If $q_n \to 0$ $(n \to \infty)$ then (iv) implies (v)

(3) Let X be a β -space, then (v) implies (iv) even if q is unbounded.

Lemma 3 (Theorem 3 [7]):

(i) If $1 < p_k < sup_k p_k = H < \infty$, for each $k \in N$ then $A \in (l(p, s), l_{\infty})$ if and only if there exists an integer D > 1 such that

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

$$\sup_{n} \sum_{k=1}^{\infty} |a_{nk}|^{q_k} M^{-q_k} k^{t(q_k-1)} < \infty$$
(1)

(ii) If
$$0 < m = inf_k p_k \le p_k \le 1$$
 for each $k \in N$, then

$$A \in (l(p,t), l_{\infty}) \Leftrightarrow K = \sup_{n,k} |a_{nk}|^{p_k} k^t < \infty$$
⁽²⁾

Lemma 4 (Theorem 4 [7]):

(i) If $1 < p_k < sup_k p_k = H < \infty$, for each $k \in N$ then $A \in (l(p, s), c)$ if and only if together with (1) the condition

$$a_{nk} \to 0 \quad (n \to \infty, \ k \text{ fixed})$$
 (3)

holds.

(ii) If $0 < m = inf_k p_k \le p_k \le 1$ for each $k \in N$, then $A \in (l(p, s), c)$ if and only if the conditions (2) and (3) hold.

Lemma 5 (Lemma 2.2 [8])

- (a) If $1 < p_k \le \sup p_k < \infty$ and $p_k^{-1} + q_k^{-1} = 1$, k = 0, 1, 2, ..., then $(l^v(p, t)^{\alpha} = M^v(p, t) \text{ and } (l^v(p, t)^* \text{ is isomorphic to } M^v(p, t), \text{ where}$ $M^v(p, t) = \{a = (a_k) : \sum_{k=1}^{\infty} |a_k v_k^{-1}|^{s_k} \cdot k^{t(q_k - 1)} \cdot N^{-s_k/p_k} < \infty, t \ge 0\}.$
- (b) If $0 < \inf p_k \le p_k < 1$, then $(l^{\nu}(p,t)^{\beta} = l_{\infty}^{\nu}(p,t)$ and $(l^{\nu}(p,t)^*$ is isomorphic to $M^{\nu}(p,t)$, where

$$l_{\infty}^{\nu}(p,t) = \{a = (a_k) : \sup_k | a_k v_k^{-1} |^{p_k} k^t < \infty, t \ge 0\}$$

Lemma 6 (Theorem 2 [7]:

(i) If $1 < p_k < sup_k p_k = H < \infty$, for each $k \in N$ then $l^*(p, s)$, i.e. the continuous dual of l(p, s) is isomorphic to E(p, s), which is defined as

$$E(p,s) = \{a = (a_k) : \sum_{k=1}^{\infty} k^{s(q_k-1)} N^{-q_{k/p_k}} [a_k]^{q_k}, s \ge 0, for some integer N > 1\}$$

(ii) If $0 < m = inf_k p_k \le p_k \le 1$ for each $k \in N$, then $l^*(p, s)$ is isomorphic to m(p,s), which is defined as

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com, editor@aarf.asia

$$m(p,s) = \{a = (a_k)\}: sup_k k^s |a_k|^{p_k}, \infty, s \ge 1$$
(4)

2. Main Results

Let $p = (p_k)$ be a sequence of strictly positive real numbers, define $s = (s_k)$ as $p_k^{-1} + s_k^{-1} = 1$, $\forall k$ then for p and $v = (v_k)$ of any fixed sequence of non-zero complex numbers, we shall prove the following two results to characterize the classes $(l^v(p,t): l_{\infty}(q))$ and $(l^v(p,t): c_0(q))$ for both the cases $1 < p_k < \infty$ and $0 < p_k \le 1$.

Theorem A:

(i) Let $0 < p_k \le 1$, $p_k^{-1} + s_k^{-1} = 1$ for every k, and let q be bounded. Then $A \in (l^v(p, t): l_{\infty}(q))$ if and only if

$$\sup_{k} \sup_{k} k^{t/p_{k}} |a_{nk}v^{-1}| M^{-1/p_{k}} |^{q_{n}} < \infty, \text{ for some } M > 1.$$
(5)

(ii) Suppose $1 < p_k \le \sup p_k = H < \infty$, $p_k^{-1} + s_k^{-1} = 1$ for each $k \in N$; and let q be bounded. Then, $A \in (l^v(p, t): l_{\infty}(q))$, if and only if

$$T(B) = \sup_{n} \sum_{k} k^{t(s_{k}-1)} B^{-s_{k}/q_{n}}(|a_{nk}||v_{k}^{-1}|)^{s_{k}} < \infty, \text{ for some } B > 1.$$
(6)

Proof: (i) Let $A \in (l^{\nu}(p,t): l_{\infty}(q))$. Then for each $n, (a_{n1}, a_{n2}, ...) \in (l^{\nu}(p,t)^{\alpha} = l_{\infty}^{\nu}(p,t)$. Also, by lemma 5 $A_n \in (l^{\nu}(p,t)^*$ for each $n \in N$. We show that $||A_n||_M = \sup_k |a_{nk}v^{-1}|k^{t/p_k}M^{-1/p_k}$, for all M > 1 such that $||A_n||_M$ is defined. To do this, choose any $n \in N$. Now, if M is such that, for some sequence $(k_{(i)})$ of integers $|a_{nk(i)}v_{k(i)}^{-1}|M^{-1/p_{k(i)}} \ge i$ for each $i \in N$, then by defining

$$x^{(k(i))} = (M^{-1/p_{k(i)}} \operatorname{sgn}(a_{nk(i)} \cdot v_{k(i)}^{-1}))e^{(k(i))}, i = 1, 2, \dots$$

it follows that $||A_n||_M$ is defined. Since $(a_{n1}, a_{n2}, ...) \in (l^{\nu}(p, t)^{\alpha}$ there is an integer $M_n \ge 1$ such that

$$|a_{nk}v_k^{-1}|^{p_k} \le M_n, \quad \forall k.$$

Now choose $M \ge M_n$. Using $g(x) = \sum_k k^{-t} |x_k v_k|^{p_k} \le 1/M$, since $M^{1/p_k} k^{-t/p_k} |x_k v_k^{-1}| \le 1$, $\forall k$ and since $\sup_k p_k \le 1$, we have:

$$|A_n(x)| \le \sum_k |a_{nk} x_k v_k^{-1}|$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com, editor@aarf.asia

$$= \sum_{k} |(a_{nk}v_{k}^{-1})x_{k}|$$

$$\leq \sum_{k} k^{-t/p_{k}} k^{t/p_{k}} |x_{k}| M^{1/p_{k}} M^{-1/p_{k}} |a_{nk}v_{k}^{-1}|$$

$$\leq \sum_{k} k^{-t} k^{t/p_{k}} |x_{k}|^{p_{k}} M \cdot M^{-1/p_{k}} |a_{nk}v_{k}^{-1}|$$

$$\leq \sup_{k} (k^{t/p_{k}} M^{-1/p_{k}} |a_{nk}v_{k}^{-1}|)$$

$$\leq M \cdot g(x) \sup_{k} (M^{-1/p_{k}} |a_{nk}v_{k}^{-1}|),$$

whence

$$||A_n||_M \le \sup_k M^{-1/p_k} |a_{nk} v_k^{-1}|.$$

Given $\varepsilon > 0$ we can choose an m > k such that

$$M^{-1/p_k}|a_{nk}v_k^{-1}| > \sup_k M^{-1/p_k}|a_{nk}v_k^{-1}| - \varepsilon.$$

Define $x = (M^{-1/p_k} sgn | a_{nk} v_k^{-1} | e^{(m)})$. Then we have $g(x) \le 1/M$; and

$$A_n(x) > \sup_k M^{-1/p_k} |a_{nk} v_k^{-1}| < \varepsilon.$$

whence,

$$||A_n||_M = \sup_k M^{-1/p_k} |a_{nk} v_k^{-1}|.$$

Since $l^{\nu}(p,t)$ is complete paranormed space, by Lemma 2 it is a β –space; and thus by Lemma 1we must have (5) holding.

Conversely, let (5) hold. Then again it follows that for each $n, A_n \in (l^v(p, t))^*$ with $||A_n||_M = \sup_k |a_{nk}v_k^{-1}|M^{-1/p_k}k^{t/p_k}$, M such that $||A_n||_M$ is defined. And using Lemma 1 we must have that the sequence $(A_n(x)) \in l_{\infty}(q)$.

(ii) For each $n \in N$, define A_n by

$$A_n(x) = \sum_k a_{nk} x_k,$$

For sufficiency, let (6) hold. Then if $x \in l^{\nu}(p, t)$ we have for each *n*, assuming $q_n \leq 1$, $\forall n$,

$$|A_n(x)|^{q_n} \le (\sum_k |a_{nk} x_k v_k^{-1}|)^{q_n}$$

= $(\sum_k k^{t/p_k} k^{-t/p_k} |x_k| B^{-1/s_k} B^{-1/s_k} |a_{nk} v_k^{-1}|)^{q_n}$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

$$\leq (\sum_{k} k^{t(s_{k}-1)} | a_{nk} v_{k}^{-1} |^{s_{k}} B^{-s_{k}/q_{n}} + \sum_{k} B^{p_{k}/q_{n}} k^{-t} \cdot |x_{k}|^{p_{k}})^{q_{n}}$$

$$\leq (T(B))^{q_{n}} + B^{H} (g^{H}(x)^{q_{n}})$$

$$\leq T(B) + 1 + B^{H} (g^{H}(x) - 1)$$

which implies $A \in (l^{\nu}(p, t): l_{\infty}(q)).$

For necessity, let $A \in (l^{\nu}(p,t): l_{\infty}(q))$. Then $(a_{n1}, a_{n2}, ...) \in (l^{\nu}(p,t)^{+}$ for each nand so, by Lemma 5(i) and lemma 6, $A_n \in (l^{\nu}(p,t)^{*}, \forall n$. Therefore, by Lemma 1 there exists M > 1 and G > 1 such that $|A_n(x)|^{\rho_n} \leq G$, $\forall n$ and $x \in l^{\nu}(p,t)$ with $g(x) \leq 1/M$.

Thus,

$$|\sum_k G^{-1/q_n}(a_{nk}v_k^{-1})x_k| \le 1$$
, $(n = 1, 2, ...)$ if $g(x) \le 1/M$.

Now, write $\Lambda = (G^{-\frac{1}{q_n}}(a_{nk}v_k^{-1}))$ and choose any $x \in l^v(p, t)$. By the continuity of scalar multiplication on $l^v(p, t)$, there is a $K \ge 1$, such that $g(K^{-1}x) \le 1/M$, whence

$$\left|\sum_{k} G^{-1/q_n}(a_{nk}v_k^{-1}) x_k\right| \le K, \ \forall n.$$

Thus, we see that $\Lambda \in (l^{\nu}(p, t): l_{\infty})$ and so there exists D > 1 such that

$$\sup_{n} \sum_{k} k^{t(s_{k}-1)} D^{-s_{k}} |G^{-1/q_{n}}(a_{nk}v_{k}^{-1})|^{s_{k}} < \infty.$$

Writing B = GD and using the fact that $D^{q_n} \leq D$, $\forall n$ we obtain (6).

Theorem B: (i) Suppose $0 < p_k \le 1$, $p_k^{-1} + s_k^{-1} = 1$ for every $k \in N$ and q be bounded. Then $A \in (l^v(p, t): c_0(q))$ if and only if

$$|a_{nk}v_k^{-1}|^{q_n} \to 0 \quad (n \to \infty), \text{ for each } k \in N,$$
(7)

$$\lim_{M} \sup_{k} \sup_{k} k^{t/p_{k}} | a_{nk} v^{-1} | M^{-1/p_{k}} \}^{q_{n}} \to 0$$
(8)

(ii) Let $1 < p_k \le \infty$, $p_k^{-1} + s_k^{-1} = 1$ for every $k \in N$ and q be bounded. Then $A \in (l^v(p,t): c_0(q))$ if and only if (7) holds and for each $D \ge 1$,

$$\lim_{B} \limsup_{n} \{\sum_{k} k^{t(s_{k}-1)} D^{-s_{k}/q_{n}} B^{-s_{k}} | a_{nk} v_{k}^{-1} |^{s_{k}} \}^{q_{n}} = 0$$
(9)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com, editor@aarf.asia

Proof: (i) Let $A \in (l^{\nu}(p,t):c_0(q))$. Since $(l^{\nu}(p,t):c_0(q) \subset (l^{\nu}(p,t):l_{\infty}(q)$ then as in the preceding theorem we must have $A_n \in (l^{\nu}(p,t)^*$ and

$$||A_n||_M = \sup_k M^{-1/p_k} |a_{nk}v_k^{-1}| k^{t/p_k}.$$

whenever $||A_n||_M$ is defined, for each $n \in N$. Then by Lemma 2 part 3, (5) must hold. (4) is easily obtained since $x = e^{(k)} \in l^{\nu}(p, t)$ for each k = 1, 2, 3, ...

Conversely, if (7) and (8) hold we can show that $A_n \in (l^{\nu}(p, t)^*, \text{ with }$

$$||A_n||_M = \sup_k M^{-1/p_k} |a_{nk} v_k^{-1}| k^{t/p_k}$$

whenever $||A_n||_M$ is defined, for each $n \in N$; also $(e^{(k)})$ is a basis in $l^v(p, t)$. Then Theorem A(i) implies that $A \in (l^v(p, t): c_0(q))$.

(ii) Define A_n by

$$A_n(x) = \sum_k a_{nk} x_k$$

on $l^{\nu}(p,t)$ for each $n \in N$; and consider the proof of necessity. Thus, let $A \in (l^{\nu}(p,t):c_0(q))$. Obviously we have (4) as in Theorem A(ii) and we see that $A_n \in (l^{\nu}(p,t)^* \forall n. \text{ If } A \in (l^{\nu}(p,t):c_0(q)) \text{ then }$

$$D^{1/q_n}(a_{nk}v_k^{-1}) \in (l^{\nu}(p,t):c_0(q)), \ \forall D > 1.$$

So, it is enough to show that (9) holds for D = 1. Since $c_0(q) \subset l_{\infty}(q)$ and using Lemma 3 (i), there exists B > 1 such that

$$T_n = \sum_k k^{t(s_k-1)} B^{-\frac{H}{s_k}} |a_{nk}|^{s_k} \le 1$$
, for every $n \in N$.

Choose any *n*, and define

$$x_{k}^{(n)} = B^{-\frac{H}{s_{k}}} gn(a_{nk}v_{k}^{-1}) |a_{nk}v_{k}^{-1}|^{s_{k}-1} \cdot k^{t(s_{k}-1)}, \text{ for each } k;$$

Then,

$$g^{H}(x^{(n)}) = \sum_{k} k^{-t} k^{t(s_{k}-1)^{p_{k}}} B^{(-Hs_{k})p_{k}} |a_{nk}v_{k}^{-1}|^{s_{k}/p_{k}}$$
$$= \sum_{k} k^{t(s_{k}-1)^{p_{k}}} B^{(-Hs_{k})p_{k}} |a_{nk}v_{k}^{-1}|^{s_{k}}$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 $\leq B^{-H} \sum_{k} k^{t(s_{k}-1)^{p_{k}}} B^{(-Hs_{k})} |a_{nk} v_{k}^{-1}|^{s_{k}}$ $\leq B^{-H}.$

And,

$$A_n(x^n) = \sum_k a_{nk} v_k^{-1} x_k^{(n)}$$

= $\sum_k a_{nk} k^{t(s_k-1)} B^{(-Hs_k)} |a_{nk} v_k^{-1}|^{s_k-1} \operatorname{sgn}(a_{nk} v_k^{-1})$
= T_n

whence $||A_n||_B \ge T_n$ for each *n*. By Lemma 2b (1) we must have $\lim_B \limsup_n (||A_n||_B)^{q_n} = 0$, whence (y) holds with D = 1.

Sufficiency: Let (11) and (9) hold $\forall D \ge 1$. It follows that $A_n \in (l^v(p,t)^* \forall n \in N)$. Since $(e^{(k)})$ is a basis in $l^v(p,t)$ and using Lemma 2 b(1) it is enough to show that $\lim_B \limsup_n (||A_n||_B)^{q_n} = 0$.

Now choose $\varepsilon > 0$ such that $0 < \varepsilon \le 1$ and $D > 2/\varepsilon$. There exists B > 1 and m such that

$$\left(\sum_{k} k^{t(s_{k}-1)} D^{-s_{k}/q_{n}} B^{-s_{k}} \right| a_{nk} v_{k}^{-1} |^{s_{k}} \right)^{q_{n}} < \frac{\varepsilon}{2} \text{ if } n \ge m.$$

Then if $g(x) \le 1/B$ and if $n \ge m$ we have

$$\begin{aligned} |A_{x}(x)|^{q_{n}} &\leq (\sum_{k} |a_{nk}v_{k}^{-1}| D^{1/q_{n}} B^{-1}B D^{-1/q_{n}}k^{t/p_{k}} k^{-t/p_{k}}|x_{k}|)^{q_{n}} \\ &\leq (\sum_{k} |a_{nk}v_{k}^{-1}|^{s_{k}} D^{s_{k}/q_{n}} B^{-s_{k}} k^{t(s_{k}-1)} + D^{-p_{k}/q_{n}} k^{-t}|x_{k}|^{p_{k}})^{q_{n}} \\ &\leq (\sum_{k} |a_{nk}v_{k}^{-1}|^{s_{k}} D^{\frac{s_{k}}{q_{n}}} B^{-s_{k}} k^{t(s_{k}-1)})^{q_{n}} + (D^{-\frac{1}{q_{n}}}B^{H}g^{H}(x))^{q_{n}} \\ &\leq \varepsilon/2 + (D^{-\frac{1}{q_{n}}}B^{H}g^{H}(x)^{q_{n}} \\ &< \varepsilon \end{aligned}$$

which completes the proof.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com, editor@aarf.asia

Conclusion: These characterizations are generalizations of Bilgin (see [8]) and fill the gap in the existing literature. The results obtained here also throw light on the ways for further generalizations.

References

- I. J. Maddox. and M. A. L. Willey, "Continuous operators on paranormed spaces and matrix transformations", *Pacific J. Math.*, 53(1) 1974, pp. 217-228
- W. L. C. Sargent, "On some theorems of Hahn, Banach and Steinhaus", J. London Math. Soc., 28, 1952, pp. 438 – 451
- [3] I. Helperin and H. Nakano, "Generalized l^p spaces and Schur property", J. Math. Soc. Japan, 5(1),1953, pp. 50 58
- [4] S. Simons, "The sequence spaces $l(p_v)$ and $m(p_v)$ ", Proc. London Math. Soc. 15(3), 1965, pp. 422 - 436
- [5] I. J. Maddox, I. J., "Continuous and Köthe- Toeplitz duals of certain sequence spaces", *Proc. Camb. Phil. Soc.*, 65 (431), 1969, pp. 431 – 435
- [6] I. J. Maddox, "Spaces of strongly summable sequences", *Quart. J. Math. Oxford*", 2(18), 1967, pp.345-355
- [7] E. Bulut and O. Çakar, "The sequence space l(p, s) and related matrix transformations", *Communications de la Faculté des Sciences, de l'Université d'Ankara, 28*, 1979, pp. 33 - 44
- [8] T. Bilgin, "Matrix transformations of some generalized analytic sequence spaces", Mathematical and Computational Applications, 7(2), 2000, pp. 165-170
- [9] Lascarides, C. G., (1971), "A study of certain sequence spaces of Maddox and a generalization of theorem of Iyre", *Pacific J. Math.*, 38(2), pp. 487-500
- [10] Maddox, I. J., (1968), "Paranormed sequence spaces generalized by infinite matrices", *Proc. Camb. Phil. Soc.*, 64 (335), pp. 64-41
- [11] Maddox, I. J., (1969), "Some properties of paranormed sequence spaces", *London J. Math.* Soc., 1(2), pp. 316-322

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **International Research Journal of Mathematics, Engineering & IT (IRJMEIT)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia