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ABSTRACT 

 

In this paper, we study inextensible flows of striction curve of ruled surface. Necessary and 

sufficient conditions for an inelastic striction curve flow are expressed as a partial 

differential equation involving 1st curvature and 2nd curvature. 
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1. INTRODUCTION 

 Recently, the study of the motion of inelastic curves have an important role. The time 

evolution of a curve represented by its corresponding flow. The flow of a curve is said to be 

inextensible if, firstly its arc length is preserved and secondly its intrinsic curvature is 

preserved. Physically, inextensible curve flows give rise to motions in which no strain energy 

is induced. The swinging motion of cord of fixed length, for example, or of a piece of paper 

carried by the wind, can be described by inextensible curve. Some movement in nature is 

inspired to examine flow of curves as snake and elephant's trunk movement. For example, 

both Chirikjian and Burdick [1] and Mochiyama et al. [2] study the shape control hyper-

redundant, or snake-like robots. Inextensible curve and surface flows emerge many problems 

in computer vision [3] and computer animation [4]. 

   Particularly, inextensible time evolution of curves and surfaces is examined 

mathematically. Significant methods of this article developed by Gage and Hamilton [5], and 

Grayson [6]  for studying the shrinking of closed plane curves to a circle via the heat 

equation. In [7] Gage also studies area preserving evolution of inelastic plane curves. In [8,9] 

Know et al. study evolution of inelastic plane curves, and inextensible flows of curves and 

developable surfaces. 
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 In this paper, we study inextensible flows of striction curves of ruled surfaces according 

to Blaschke frame. Necessary and sufficient conditions for an inelastic striction curve of ruled 

surface flow are expressed as a partial differential equation involving the 1st curvature and 

2nd curvature. 

 

2. DIFFERENTIAL GEOMETRY OF RULED SURFACE IN 3E  

  

Let I  be an open interval in the real line IR . Let ( )k k s  be a curve in 3E  defined on I  

and ( )q q s  be a unit direction vector of an oriented line in 3IR . Then we have the following 

parametrization for a ruled surface  

  ( , ) ( ) ( )q s v k s v q s  
 

                                                                                              (2.1) 

The parametric s -curve of this surface is a straight line of the surface which is called ruling. 

For 0v  , the parametric v -curve of this surface is ( )k k s
 

 which is called base curve or 

generating curve of the surface. In particular, if q


 is constant, the ruled surface is said to be 

cylindrical, and non-cylindrical otherwise[10].  

  

 The striction point on a ruled surface is the foot of the common normal between two 

consecutive rulings. The set of the striction points constitute a curve ( )c c s
 

 lying on the 

ruled surface and is called striction curve. The parametrization of the striction curve ( )c c s
 

 

on a ruled surface is given by 

  
,

( ) ( )
,

dq dk
c s k s q

dq dq
 


 

  .                                                                                           

(2.2) 

So that, the base curve of the ruled surface is its striction curve if and only if , 0dq dk 


.  

  

 The distribution parameter (or drall) of the ruled surface in (2.1) is given as 

  
,

,
q

dk q dq

dq dq





  

                                                                                                         

(2.3) 
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If 0q  , then the normal vectors of the ruled surface are collinear at all points of the same 

ruling and at the nonsingular points of the ruled surface the tangent planes are identical. We 

then say that the tangent plane contacts the surface along a ruling. Such a ruling is called a 

torsal ruling. If 0q  , then the tangent planes are distinct at all points of the same ruling 

which is called nontorsal. 

  

 A ruled surface whose all rulings are torsal is called a developable ruled surface. The 

remaining ruled surfaces are called skew ruled surfaces. Thus, from (2.3) a ruled surface is 

developable if and only if at all its points the distribution parameter  0q   [10,11]. 

 Let 
/

, ,
/

dq ds
q h a q h

dq ds

  
   

  

   
  be a moving othonormal trihedron making a spatial 

motion along a closed space curve ( )k s


,  s , in 3E . In this motion, an oriented line fixed 

in the moving system generates a closed ruled surface called closed trajectory ruled surface 

(CTRS) in 3E [12]. A parametric equation of a closed trajectory ruled surface generated by 

q


-axis is 

  
( , ) ( ) ( ),

( 2 , ) ( , ), ,

q s v k s v q s

s v s v s v



  

 

  

 


                                                                                  (2.4) 

Consider the moving orthonormal system  , ,q h a
 

. Then, the axes of the trihedron intersect 

at the striction point of q


-generator of q -CTRS. The structral equations of this motion are  

  

1

1 2

2

dq h

dh q a

da h



 



 


  


 



  


                                                                                       

(2.5) 

and 

  cos sin
dc

q a
ds

  
 

                                                                                       

(2.6) 
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where ( )c c s  is the striction line of q -CTRS and the differential forms 1 2,   and    are 

the natural curvature, the natural torsion and the striction of q -CTRS, respectively[10,12]. 

Here, the striction is restricted as / 2 / 2      fort he orientation on q -CTRS and s  is 

the length of the striction line. 

 The pole vector and the Steiner vector of the motion are given by  

  ,p d





  
  
                                                                                          

(2.7) 

respectively, where 2 1q a   
  

 is the instantaneous Pfaffian vector  of the motion.   

 

3.INEXTENSIBLE FLOWS OF STRICTION CURVE OF RULED SURFACE  

  

 Throughout this study, we assume that 3( ) :[0, ] [0, ]c s l t    is a one parameter family 

of smooth curves in space 3 . Let u  be the curve parametrization variable, [0, ]u l . 

The arclenght of striction curve c  is given by  

  
0 0

u u
c

s du v du
u


 

                                                                                                    

(3.1) 

where  

  

1 2

,
c x x

u u u

  


  
.                                                                                                    

(3.2) 

The operator 
s




 is given in terms of u  by 

  
1

s v u

 


 
 

where 

  
c

v
u





. 

The arclenght parameter is ds v du . 
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Any flow of c  can be represented as 

  

  
1 2 3

c
f q f h f a

t


  



 
                                                                                                  

(3.3) 

The arclength is given up to a constant by  

  
0

( , )

u

s u t v du   

In the real space the requirement that the curve not be exposed to any elongation or 

compression can be expressed by the condition  

  
0

( , ) 0

u
v

s u t du
t t

 
 

 
                                                                                                

(3.4) 

for [0, ]u l . 

  

     Definition 3.1.  A  striction curve of ruled surface evolution ( , )c u t  and  
c

t




 flow of this 

curve in 3  are said to be inextensible if  

  0
c

t u

 


 
. 

 

     Lemma 3.2. Let 
c

u




 be a smooth flow of the striction curve c . The flow is inextensible if 

and only if  

  1
2 1

fv
f v

t u



 

 
                                                                                                        

(3.5) 

                                                                 

Proof.  Suppose that 
c

u




 be a smooth flow of the striction curve c . Considering definition of 

c , we have 
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  2 ,
c c

v
u u

 


 
                                                                                                           

(3.6) 

u




 and 

t




 commute since and are independent coordinates. Then, by differentiating of 

formula (3.1) we get  

  2 ,
v c c

v
t t u u

   


   
. 

On the other hand, changing 
u




 and 

t




 we  

  ,
v c c

v
t u u t

    
  

    
 

From equation (3.3) , we obtain  

  
1 2 3, ( )

v c
v f q f h f a

t u u

  
  

  

 
. 

By the formula of Blaschke derivative , we have 

   

  31 2
2 1 1 1 3 2 2 2,

ff fv
q f v q f v f v h f v a

t u u u
   

      
           

        

  
. 

Thus we have 

  1
2 1

fv
f v

t u



 

 
.  

    Theorem 3.3. Let 1 2 3

c
f q f h f a

u


  



 
 be a smooth flow of the striction curve c of ruled 

surface. The flow is inextensible if and only if 

  1
2 1

f
f

s






.                                                                                                                  

(3.7) 

Proof. Let 
c

u




 be extensible. From Eq. (3.4), we have  
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  1
2 1

0 0

( , ) ( ) 0

u u
fv

s u t du f v du
t t u


 

   
                                                                     

(3.8) 

[0, ]u l  .  1
2 1

f
f v

u






, or 1

2 11
f

v f
u







, or  1
2 1

f
f

s






 as claimed.  We suppose that 1v   

and the local coordinate u  corresponds to the curve arc length s . Now we give following 

lemma that necessary. 

 

     Lemma 3.4. 

  32
1 1 3 2 2 2

ffq
f f h f a

t s s
  

   
       

     

  
,                                                             

(3.9) 

  2
1 1 3 2( )

fh
f f q a

t s
  


    

 


 

,                                                                            

(3.10) 

  3
2 2

fa
f q h

t s
 

  
    

  

 
,                                                                                    

(3.11) 

where , .
h

a
t










 

Proof. Considering definition of c , we have  

  1 2 3( ).
q c

f q f h f a
t t s s

   
   

   

  
 

Using the Blaschke equations, we get 

  31 2
2 1 1 1 3 2 2 2 .

ff fq
f q f f h f a

t s s s
   

      
           

        

  
                                  

(3.12) 

 Substituting (3.7) in (3.12), we have  

  32
1 1 3 2 2 2 .

ffq
f f h f a

t s s
  

   
       

     

  
 

Now differentiate the Blaschke frame by t: 
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2
1 1 3 2

3
2 2

0 , , , , ,

0 , , , , ,

0 , , , , .

fq h h
q h h q f f q

t t t s t

fq a a
q a a q f q

t t t s t

h a a
h a a h h

t t t t

 





   
      
    

   
     
    

   
    
   

    

  
    

     

 

Considering , , 0
h a

h a
t t

 
 

 

  
 and from above statement, we obtain 

  

2
1 1 3 2

3
2 2

( ) ,

,

fh
f f q a

t s

fa
f q h

t s

  

 


    

 

  
    

  


 

 
 

where ,
h

a
t










. 

The following theorem states the conditions on the 1st curvature and 2nd curvature for the 

striction curve flow ( , )c s t  to be inextensible. 

     Theorem 3.5. Suppose 1 2 3

c
f q f h f a

t


  



 
 is inextensible. Then, the following system of 

partial differential equations holds:        

  

2
2 31 2

1 1 3 2 2 2 22

2

32 2 2
1 2 1 1 3 22

32
2 2 1

( ) ( ) ,

( )
( ),

( ) .

ff
f f f

t s s s s

ff f
f f

s s s

f
f

t s s


   


   

 
 

  
    

    

 
    

  

 
  

  

                                                  

(3.13)      

Proof. Noting that ,
q q

s t t s

   


   

 
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32
1 1 2 2 2

2

3 21 1 2 2
1 1 3 2 1 22

2

3 32 2
2 2 22

( )( )
( )

( )
( )

ffq
f f h f a

s t s s s

ff f f
h f f q a

s s s s

f ff
a f h

s s s

  


   


 

       
        

        

    
          

     

    
       

    

  

  



 

while 

 
2

2 31 2
1 1 3 2 2 2 22

( ) ( )
ff

f f f
t s s s s


   

  
    

    
 

and 

 
2

32 2 2
1 2 1 1 3 22

( )
( ).

ff f
f f

s s s


   

 
    

  
 

Since 
a a

s t t s

   
  

   

 
, we get 

 

3
2 2

2

3 3
2 2 2 2 1 1 22

( ) ( )

fa
f q h

s t s s

f f
f q f h h q a

s s s s

 


     
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Therefore  
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   
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4. CONCLUSIONS 

 Inextensible time evolution of curves and surfaces have an important role in computer 

vision, robotics and physical science. In this paper inextensible flows of striction curve of 

ruled surface according to Blaschke frame have given by considering important role of 

Euclidean geometry.  
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