FUZZY β -IRRESOLUTE MAPPING ANJANA BHATTACHARYYA¹

Department of Mathematics Victoria Institution (College) 78 B, A.P.C. Road Kolkata – 700009, INDIA.

ABSTRACT

Some properties of fuzzy β -irresolute mapping (formerly known as fuzzy $M\beta$ -continuous mapping [8]) have been studied here. Also it has been shown that fuzzy irresolute mapping [11] and fuzzy β -irresolute mapping are independent notions. In the last section some applications of fuzzy β -irresolute mapping have been discussed.

AMS Subject Classifications: 54A40, 54D99

Keywords: Fuzzy β -open set, fuzzy semiopen set, fuzzy preopen set, fuzzy β -compact space, fuzzy β -closed space.

INTRODUCTION

Throughout the paper, by (X, τ) or simply by X we mean a fuzzy topological space (fts, for short) in the sense of Chang [4]. A fuzzy set [16] A is a mapping from a nonempty set X into a closed interval I = [0, 1]. The support [13] of a fuzzy set A in X will be denoted by suppA and is defined by $suppA = \{x \in X : A(x) \neq 0\}$. A fuzzy point [13] with the singleton support $x \in X$ and the value $t(0 < t \le 1)$ at x will be denoted by x_t . 0_X and 1_X are the constant fuzzy sets taking values 0 and 1 in X respectively. The complement [16] of a fuzzy set A in X will be denoted by $1_X \setminus A$ and is defined by $(1_X \setminus A)(x) = 1 - A(x)$, for all $x \in X$. For two fuzzy sets A and B in A, we write $A \subseteq B$ if and only if $A(x) \subseteq B(x)$, for each $A \subseteq X$ and $A \subseteq X$ means $A \subseteq X$. The negation of these two statements will be denoted by $A \subseteq B$ and $A \subseteq A$ respectively. $A \subseteq A$ and $A \subseteq A$ and $A \subseteq A$ respectively stand for the fuzzy closure [4] and fuzzy interior [4] of $A \subseteq A$ in $A \subseteq A$ in $A \subseteq A$ will be called fuzzy semiopen [2] (resp., fuzzy $A \subseteq A$ -open [1], fuzzy preopen [12]) if $A \subseteq A$ in $A \subseteq A$ will be called fuzzy semiopen [2] (resp., fuzzy $A \subseteq A$ -open [1], fuzzy preopen [12]) if $A \subseteq A$ in $A \subseteq A$ will be called fuzzy semiopen [2] (resp., fuzzy $A \subseteq A$ -open [1], fuzzy preopen [12]) if $A \subseteq A$ -cl int $A \subseteq A$ -open [12] if $A \subseteq A$ -cl int $A \subseteq A$ -cl int $A \subseteq A$ -cl intA-cl i

Page 30

¹The author acknowledges the financial support from UGC (Minor Research Project), New Delhi

cl int clA, $A \leq int$ clA). The set of all fuzzy semiopen (resp., fuzzy β -open) sets of X will be denoted by SO(X) (resp., $\beta O(X)$). The complement of a fuzzy semiopen (resp., fuzzy β -open, fuzzy preopen) set A in X is called fuzzy semiclosed [2] (resp., fuzzy β -closed [1], fuzzy preclosed 12]). The smallest fuzzy semiclosed (resp., fuzzy β -closed, fuzzy preclosed) set containing a fuzzy set A in X is called fuzzy semiclosure [2] (resp., fuzzy β -closure [1], fuzzy preclosure [12]) of A and is denoted by sclA (resp., βclA , pclA). A fuzzy set B in A is said to be a B-nbd [1] of a fuzzy point A in A if there exists a fuzzy B-open set A in A if there is a fuzzy B-open set A in A is called a fuzzy B-open set A in A if there is a fuzzy B-open set A in A such that A in A in A such that A in A such that A in A in A such that A in A in

1. FUZZY β -IRRESOLUTE MAPPING : SOME CHARACTERIZATIONS

In this section fuzzy β -irresolute mapping has been characterized in different ways.

DEFINITION 1.1. A fuzzy mapping $f: X \to Y$ is said to be fuzzy β -irresolute (fuzzy $M\beta$ -continuous mapping [8]) if $f^{-1}(A)$ is fuzzy β -open in X for each fuzzy β -open set A in Y.

THEOREM 1.2. Let $f: X \to Y$ be a fuzzy function. Then the following are equivalent:

- (a) f is fuzzy β -irresolute,
- (b) for each fuzzy point x_t in X and each fuzzy β -open set A in Y such that $f(x_t) \leq A$, there exists a fuzzy β -open set B in X such that $x_t \leq B$ and $f(B) \leq A$,
- (c) $f^{-1}(B)$ is fuzzy β -closed in X for each fuzzy β -closed set B in Y,
- (d) for each fuzzy point x_t in X, the inverse of each fuzzy β -nbd B of $f(x_t)$ in Y is a fuzzy β -nbd of x_t in X,
- (e) for each fuzzy point x_t in X and each fuzzy β -nbd B of $f(x_t)$, there exists a fuzzy β -nbd C of x_t in X such that $f(C) \leq B$,
- (f) for each fuzzy set D in X, $f(\beta clD) \leq \beta cl f(D)$,
- (g) for each fuzzy set B in Y, $\beta cl(f^{-1}(B)) \leq f^{-1}(\beta cl B)$.

PROOF. (b) \Rightarrow (a). Let A be a fuzzy β -open set in Y and x_t , fuzzy point in $f^{-1}(A)$. Then $x_t \leq f^{-1}(A)$, i.e., $f(x_t) \leq A$. By (b), there exists a fuzzy β -open set B in X such that $x_t \leq B$ and $f(B) \leq A$. Thus $B \leq f^{-1}(A)$. We have to show that $f^{-1}(A) \leq cl$ int $clf^{-1}(A)$. As $B \in \beta O(X)$, $x_t \leq B \leq cl$ int $clB \leq cl$ int $clf^{-1}(A)$. As $x_t \leq f^{-1}(A)$, $f^{-1}(A) \leq cl$ int $clf^{-1}(A)$.

- (a) \Rightarrow (c). Let *B* be any fuzzy β -closed set in *Y*. Then $1_Y \setminus B \in \beta O(Y)$. By (a), $f^{-1}(1_Y \setminus B = 1X \setminus f 1B \in \beta O(X)$ and so f 1(B) is fuzzy β -closed in *X*.
- (c) \Rightarrow (a). Straightforward.
- (a) \Rightarrow (d). Let x_t be a fuzzy point in X and B, a fuzzy β -nbd of $f(x_t)$ in Y. Then there exists $U \in \beta O(Y)$ such that $f(x_t) \leq U \leq B$. Then $x_t \leq f^{-1}(U) \leq f^{-1}(B)$. Since $U \in \beta O(Y)$, by (a) $f^{-1}(U) \in \beta O(X)$ and hence the result.
- (d) \Rightarrow (e). Since $ff^{-1}(B) \leq B$, the result follows by taking $C = f^{-1}(B)$.
- (e) \Rightarrow (b). Let x_t be a fuzzy point in X and A, any fuzzy β -open set in Y such that $f(x_t) \leq A$. Then A is fuzzy β -nbd of $f(x_t)$ in Y. By (e), there exists a fuzzy β -nbd C of x_t in X such that $f(C) \leq A$. Therefore, there exists $U \in \beta O(X)$ such that $x_t \leq U \leq C$ and so $f(U) \leq f(C) \leq A \Rightarrow f(U) \leq A$.
- (c) \Rightarrow (f). Let *D* be any fuzzy set in *X*. Then $\beta cl\ f(D)$ is fuzzy β -closed in *Y*. By (c), $f^{-1}(\beta cl\ f(D))$ is fuzzy β -closed in *X*. Now $D \le f^{-1}f(D) \le f^{-1}(\beta cl\ f(D))$, i.e., $\beta cl\ D \le \beta cl\ f^{-1}(\beta cl\ f(D)) = f^{-1}(\beta cl\ f(D))$. Therefore, $f(\beta cl\ D) \le \beta cl\ f(D)$.
- (f) \Rightarrow (c). Let B be any fuzzy β -closed set in Y. Put $D = f^{-1}(B)$. By (f), $f(\beta cl D) \le \beta cl f(D) = \beta cl \left(f(f^{-1}(B)) \right) \le \beta cl B = B$. Thus $\beta cl D \le f^{-1}(f(\beta cl D)) \le f^{-1}(B) = D$. Hence $D = f^{-1}(B)$ is fuzzy β -closed in X.
- (f) \Rightarrow (g). Let $B \in I^Y$. Again let $D = f^{-1}(B)$. By (f), $f(\beta cl D) \leq \beta cl f(D)$, i.e., $\beta cl D \leq f^{-1}(\beta cl f(D))$, i.e., $\beta cl f^{-1}(B) \leq f^{-1}(\beta cl f(D)) \leq f^{-1}(\beta cl B)$.
- (g) \Rightarrow (f). Let $D \in I^X$. By (g), $\beta cl(f^{-1}f(D)) \leq f^{-1}(\beta clf(D)) \Rightarrow \beta clD \leq f^{-1}(\beta clf(D)) \Rightarrow f(\beta clD) \leq \beta clf(D)$.

THEOREM 1.3. A mapping $f: X \to Y$ is fuzzy β -irresolute iff for each fuzzy point x_t in X and any fuzzy β -open β -q-nbd Y of $f(x_t)$ in Y, there exists a fuzzy β -open β -q-nbd Y of X in X such that X such that X in X is X in X such that X in X such that X in X is X in X such that X in X in X is X in X in X such that X is X in X

PROOF. Let $f: X \to Y$ be fuzzy β -irresolute and x_t be a fuzzy point in X. Let V be a fuzzy β -open β -q-nbd of $f(x_t)$ in Y. Then $f^{-1}(V)$ (= U, say) is a fuzzy β -open β -q-nbd of $f(x_t)$ in X such that $f(U) \le V$.

Conversely, let x_t be any fuzzy point in X and V be any fuzzy β -open set containing $f(x_t)$. Let m_t be a positive integer such that $1/m_t < t$. Then $0 < 1 - t + 1/n = \beta_n$ (say) < 1, for all $n \ge m_t$. Now $y_{\beta_n} qV$ for each $n \ge m_t$, where y = f(x). Then by hypothesis, there exists a fuzzy β -open set U_n in X such that $x_{\beta_n} qU_n$ and $f(U_n) \le V$, for all $n \ge m_t$. Put $U = \bigcup_{n \ge m_t} U_n$. Then $U \in \beta O(X)$ such that $f(U) \le V$. Also $\beta_n + U_n(x) > 1$, for all $n \ge m_t \Rightarrow 1 - t + 1/n + U_n(x) > 1$, for all $n \ge m_t \Rightarrow t < U_n(x) + 1/n$, for all $n \ge m_t \Rightarrow t < U_n(x) + 1/n$, for all $n \ge m_t \Rightarrow t < U_n(x) + 1/n$, for all $n \ge m_t \Rightarrow t < U_n(x) + 1/n$.

2. FUZZY IRRESOLUTE AND FUZZY β -IRRESOLUTE MAPPING

In this section it has been shown that fuzzy irresolute mapping [11] and fuzzy β -irresolute mapping are independent notions.

First we recall the definition from [11] for ready reference.

DEFINITION 2.1. A fuzzy mapping $f: X \to Y$ is said to be fuzzy irresolute if $f^{-1}(A)$ is fuzzy semiopen in X for each fuzzy semiopen set A in Y.

REMARK 2.2. It is clear from the following two examples that fuzzy irresolute mapping and fuzzy β -irresolute mapping are independent notions.

EXAMPLE 2.3. Let $X = \{a, b\}, \tau = \{0_X, 1_X, A\}, \tau_1 = \{0_X, 1_X, C\}$ where A(a) = 0.5, A(b) = 0.4, C(a) = 0.6, C(b) = 0.5. Then (X, τ) and (X, τ_1) are fts's. Consider the fuzzy mapping $f: (X, \tau) \to (X, \tau_1)$ defined by f(a) = b, f(b) = a. We claim that f is fuzzy β -irresolute but not fuzzy irresolute mapping. The collection of all fuzzy semiopen sets in (X, τ) is $\{0_X, 1_X, A, U\}$ where $A \le U \le 1_X \setminus A$ and that of in (X, τ_1) is $\{0_X, 1_X, C, V\}$ where $V \ge C$. Again any fuzzy set in (X, τ) is fuzzy β -open in (X, τ) and the collection of all fuzzy β -open sets in (X, τ_1) is $\{0_X, 1_X, C, W\}$ where $W \not \le 1_X \setminus C$.

Let *B* be a fuzzy semiopen set in (X, τ_1) defined by B(a) = B(b) = 0.6. Now $[f^{-1}(B)](a) = B f(a) = B(b) = 0.6$, $[f^{-1}(B)](b) = B f(b) = B(a) = 0.6$, and so $f^{-1}(W) \notin SO(X, \tau)$. Therefore, *f* is not fuzzy irresolute mapping. Since any fuzzy set in (X, τ) is fuzzy β -open in (X, τ) , *f* is fuzzy β -irresolute.

EXAMPLE 2.4. Let $X = \{a, b\}$, $\tau = \{0_X, 1_X, A\}$, $\tau_1 = \{0_X, 1_X, B\}$ where A(a) = 0.4, A(b) = 0.7, B(a) = 0.6, B(b) = 0.7. Then (X, τ) and (X, τ_1) are fts's. Now fuzzy semiopen sets in (X, τ) are $0_X, 1_X, A, V$ where $V \ge A$ and that of fuzzy β -open sets in (X, τ) are $0_X, 1_X, A, U$ where $U \not \le 1_X \setminus A$. Again fuzzy semiopen sets in (X, τ_1) are $0_X, 1_X, B, C$ where $C \ge B$ and that of fuzzy β -open sets in (X, τ_1) are $0_X, 1_X, B, W$ where $W \not \le 1_X \setminus B$. Consider the fuzzy identity mapping $i: (X, \tau) \to (X, \tau_1)$. We claim that i is fuzzy irresolute but not fuzzy β -irresolute mapping. Infact, $[i^{-1}(C)](a) = C(i(a)) = C(a) \ge B(a)$ and $[i^{-1}(C)](b) = C(i(b)) = C(b) \ge B(b)$ and $B \ge A \Rightarrow i^{-1}(C) \ge A$ which shows that i is fuzzy irresolute. But W(a) = 0.6, W(b) = 0.3 being a fuzzy β -open set in (X, τ_1) and $i^{-1}(W) = W \notin \beta O(X, \tau)$ and so i is not fuzzy β -irresolute mapping.

3. APPLICATIONS

Let us recall some definitions for ready references.

DEFINITION 3.1 [4]. Let A be a fuzzy set in an fts X. A collection \mathcal{U} of fuzzy sets in X is called a fuzzy cover of A if $\sup\{U(x): U \in \mathcal{U}\} = 1$, for each $x \in supp A$. In particular, if $A = 1_X$, we get the definition of fuzzy cover of the fts X.

DEFINITION 3.2 [6]. A fuzzy cover \mathcal{U} of a fuzzy set A in an fts X is said to have a finite subcover \mathcal{U}_0 if \mathcal{U}_0 is a finite subcollection of \mathcal{U} such that $\cup \mathcal{U}_0 \ge A$. In particular, if $A = 1_X$, then the requirement on \mathcal{U}_0 is $\cup \mathcal{U}_0 = 1_X$.

DEFINITION 3.3 [9]. An fts *X* is said to be a fuzzy semicompact space if every cover of *X* by fuzzy semiopen sets has a finite subcover.

DEFINITION 3.4. An fts X is said to be fuzzy S-closed [10] (resp., fuzzy s-closed [15]) if every fuzzy cover \mathcal{U} of X by fuzzy semiopen sets in X has a finite subfamily \mathcal{U}_0 such that $\bigcup_{U \in \mathcal{U}_0} clU = 1_X$ (resp., $\bigcup_{U \in \mathcal{U}_0} sclU = 1_X$).

DEFINITION 3.5 [3]. An fts X is said to be fuzzy β -compact space if every fuzzy cover of X by fuzzy β -open sets in X has a finite subcover.

DEFINITION 3.6 [8]. An fts X is said to be fuzzy β -closed if for every fuzzy cover \mathcal{U} of X by fuzzy β -open sets in X, there exists a finite subfamily \mathcal{U}_0 of \mathcal{U} such that $\bigcup_{U \in \mathcal{U}_0} \beta clU = 1X$.

DEFINITION 3.7. An fts X is said to be fuzzy strongly compact [12] (resp., fuzzy P-closed [17]) if every cover of X by fuzzy preopen sets in X has a finite subcover (resp., subfamily \mathcal{U}_0 of \mathcal{U} such that $\bigcup_{U \in \mathcal{U}_0} pclU = 1_X$).

THEOREM 3.8. If X is a fuzzy β -compact space and $f: X \to Y$ is fuzzy β -irresolute surjective mapping, then Y is fuzzy semicompact.

PROOF. Let $\mathcal{V} = \{V_{\alpha} : \alpha \in \Lambda\}$ be a fuzzy cover of Y by fuzzy semiopen sets of Y. Then as fuzzy semiopen sets are fuzzy β -open, \mathcal{V} is a fuzzy cover of X by fuzzy β -open sets of Y. Now f being fuzzy β -irresolute surjective mapping, $\{f^{-1}(V_{\alpha}) : \alpha \in \Lambda\}$ is a fuzzy cover of X by fuzzy β -open sets of X. As X is fuzzy β -compact, there exists a finite subfamily Λ_0 of Λ such that $\{f^{-1}(V_{\alpha}) : \alpha \in \Lambda_0\}$ also covers X, i.e., $1_X = \bigcup_{\alpha \in \Lambda_0} f^{-1}(V_{\alpha}) \Rightarrow 1_Y = f(1_X) = f(\bigcup_{\alpha \in \Lambda_0} f^{-1}(V_{\alpha})) = ff^{-1}(\bigcup_{\alpha \in \Lambda_0} V_{\alpha}) \leq \bigcup_{\alpha \in \Lambda_0} V_{\alpha}$. Hence Y is fuzzy semicommpact space.

REMARK 3.9. Since fuzzy semicompact space is fuzzy *S*-closed space, we can state the following theorem.

THEOREM 3.10. If X is fuzzy β -compact space and $f: X \to Y$ is fuzzy β -irresolute surjective mapping, then Y is fuzzy S-closed space.

PROOF. The proof is same as that of Theorem 3.8 and hence omitted.

REMARK 3.11. Since fuzzy preopen set is fuzzy β -open, we can state the following theorem.

THEOREM 3.12. If *X* is fuzzy β -compact space and $f: X \to Y$ is fuzzy β -irresolute surjective mapping, then *Y* is fuzzy strongly compact (resp., fuzzy *P*-closed).

REMARK 3.13. Since for a fuzzy set A in X, $\beta cl A \leq scl A$, $\beta cl A \leq pcl A$, $\beta cl A \leq cl A$, we can easily state the following theorem.

THEOREM 3.15. If X is fuzzy β -closed space and $f: X \to Y$ is fuzzy β -irresolute surjective mapping, then Y is fuzzy S-closed (resp., fuzzy S-closed, fuzzy P-closed) space.

NOTE 3.16. Instead of space we can state the Theorem 3.8, Theorem 3.10, Theorem 3.12, Theorem 3.14 for a fuzzy set $A \in I^X$ also.

References

- [1] Abd El-Monsef, M.E., El-Deeb, S.N. and Mahmoud, R.A.; β -open sets and β -continuous mapping, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77 90.
- [2] Azad, K.K.; *On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity*, J. Math. Anal. Appl. 82 (1981), 14 32.
- [3] Balasubramanian, Ganesan; On fuzzy β -compact spaces and fuzzy β -extremally disconnected spaces, Kybernetika 33, No. 3 (1997), 271 277.
- [4] Chang, C.L.; *Fuzzy topological spaces*, J. Math. Anal. Appl. 24 (1968), 182 190.
- [5] Fath Alla, M.A.; On fuzzy topological spaces, Ph.D. Thesis, Assiut Univ., Sohag, Egypt (1984).
- [6] Ganguly, S. and Saha, S.; *A note on compactness in fuzzy setting*, Fuzzy Sets and Systems 34 (1990), 117 124.
- [7] Ghosg, B.; Semi-continuous and semi closed mappings and semi-connectedness in fuzzy setting, Fuzzy Sets and Systems 35 (1990), 345-355.
- [8] Hanafy, I.M.; Fuzzy β -compactness and fuzzy β -closed spaces, Turk. J. Math. 28 (2004), 281-293.
- [9] Mashhour, A.S., Allam, A.A. and Abd El-Hakeim, K.M.; *On fuzzy semicompact spaces*, Bull. Fac. Sci. Assiut Univ., 16(1) (1987), 277 285.
- [10] Mukherjee, M.N. and Ghosh, B.; *On fuzzy S-closed spaces and FSC-sets*, Bull. Malaysian Math. Soc. (Second Series) 12 (1989), 1-14.
- [11] Mukherjee, M.N. and Sinha, S.P.; *Irresolute and almost open functions between fuzzy topological spaces*, Fuzzy Sets and Systems 29 (1989), 381 388.

- [12] Nanda, S.; *Strongly compact fuzzy topological spaces*, Fuzzy Sets and Systems 42 (1991), 259 262.
- [13] Pu, Pao Ming and Liu, Ying Ming; *Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence*, Jour. Math. Anal. Appl. 76 (1980), 571 599.
- [14] Singal, M.K. and Prakash, N.; *Fuzzy preopen sets and fuzzy preseparation axioms*, Fuzzy Sets and Systems 44 (1991), 273 281.
- [15] Sinha, S.P. and Malakar, S.; On s-closed fuzzy topological spaces, J. Fuzzy Math. 2(1) (1994), 95 103.
- [16] Zadeh, L.A.; Fuzzy Sets, Inform. Control 8 (1965), 338 353.
- [17] Zahran, A.M.; Strongly compact and P-closed fuzzy topological spaces, J. Fuzzy Math. 3(1)(1995), 97-102.