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ABSTRACT

In this paper we implement a signature scheme on cryptosystem with elliptic curves by using the
formulas for the projective coordinates obtained by generalizing the ideas of Montgomery to
Weierstrass equation of elliptic curves. This arithmetic with projective coordinates is more
efficient and avoid many inversions in the computations. We also propose a tast computing method

evaluating the coordinates.
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INTRODUCTION:

In 1985 Koblitz [11 [2] and Miller [3] independently made use of elliptic curves in cryptography.
Later Koyama [4] and Demytko [51 also produced analogue of RSA with elliptic curves to
overcome the vulnerabilities like homomorphic nature of RSA, however it was shown that even
these non-homomorphic RSA type cryptosystems are not totally free from RSA attacksl 61, and it

was shown that they are susceptible to chosen message attacks.[71

In [71 "A New and Optimal Chosen - message Attack on RSA-type Cryptosytems by Daniel
Bleichenbacher, Mare Joye and Jean-Jacques Quisquater, it is show that only one message is

needed to mount the attack on Demykto's system.

In this paper we mount the chosen message forgery attack- a signature scheme for eryptosystem

with elliptic curves and we impliment the attack with point addition on elliptic curves by formulas
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for projective coordinates on general Weierstrass equation of elliptic curves, [SI[91[10] with these
formulas addition requires four additions, six multiplications and two squarings and doubling
requires four additions, six multiplications and three squarings with no inversions. For any point

P on elliptic curve E(K) and for any integer k to compute the point addition kP it requires
only to calculate 2mP and 2m +1)P from mP and (m+1)P and we give a fast computation

method for kP generalizing the ideas given by P.Smith for Lucas sequences to elliptic curves.

2  POINT ADDITION WITH PROJECTIVE COORDINATES:

Let K Dbe afield with Characteristic K = 2,3 and consider the elliptic curve E(K) over K in
Weierstrass  form E:y’ =x"+AX +B and for any  points P=(x.,Y,) and

Q = (x,,y,)e EN{O} with x, # x, theaffine addition P +Q = (x,,y,) isgiven as[111[12]

2
X;=m°—x - X,,
Y. — Yy

X, = X

Y, = m(X;, — X,)—Yy,,where m =

and for P = (x,,y,) € E the affine addition 2P = (x,y) isgiven as:

3x; + A
y =m(x, —X;)—Yy,,where m = —————
2y1

Now for any point P = (x,y) e E, the projective coordinates are denoted as P = (X,Y,Z) for

X Y
x=— and y = —.
Z Z

Theorem 1: IT.et K be a field of characteristic not equal to 2,3 and E be the elliptic curve given
by the equation y* = x>+ Ax + B. If P = (x,y) then for any positive integer k , the projective
coordinates of kP aredenoted as (X, :Y, :Z,) and [X, :Z,] aregiven by recursion formulas as

follows:
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Xk = _4BZmZm+1(XmZm+1+ xm+1zm)+(xmxm+1_ AZrv1Zm+1)2’
If k=2m+1, X ,
{ Zkzz_(xmzmﬂixmﬂzm) :

4[ X, =(X.-Az2) -8BX 2.,
2m,
1Z, =4Z (X, +AX Z>+BZ})

It

Proof: For any point M = (x,y)on E 1y’ = x"+ AX + Bwe have
X Y o .
x = —,y =—for (X,Y,Z)the projective coordinate sof M.
VA VA

Therefore y2:x3+Ax+B.

Which implies that (Y—W = (iw + A(i) + B.
tz) \

Inparticul ar for a fixed P = (x,y)on Eand any integer m > 0, we have for 2m +1) P

( Ym+l Ym w
2m+1:| Zm+1 Zm ‘ _xm_xm+l
2m+1 | x""*l _ Xm ‘ Zm Zm+1
L Zm+1 Zm J
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2m+1

Zomi X (X, X,
z\lz, z

m m+ Zmzm+1
= 2
L szm+1_xm+1zm
z Zmzm+1
= _4Bzmzm 1(X Zm+1+xm+1z )+(xmxm+1_AZmZm+1)2
2
?(X Zm+1_xm+1zm)
[X2m+l;22m+l]: [-4BZ mZm+l(XmZm+l+ Xm+lzm)+ (mem+l_ AZ mZm+1)2;
X 2
Z_(xmzm+l_xm+12m) ]
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(x?-az?) -8Bx 2z°
4z (x:+AX z2+BZ?)

[X10i2,0]= (X2 - Az 2) - 88X 2002, (X v Ax 27 v 82))

Remark 1: The formulas for computation of [X,:Z,] in kP depend only on [X, 6 :Z,] for

. D (X, = X, (x)
P=(x,y) and X, = x,Z, =1 ie, the formulas are polynomials in x(P) and } “ “

[Z, = Z,(x).
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Theorem 2: let K be a field of characteristic not equal to 2, 3 and let £ be the elliptic curve
given by the equation E(K):y =x"+ AX +B and  also P=(x,.Y,) and
Q=(x,,.¥,,)e E(XK)\{o} with P = Q . Given the point P -Q = (x,y), if y # 0 then the y

-coordinate of P satisfies

y(P) =y = —[ZB +(A+ xmx)(x2+ X)) = X, (x = xm)z].
y

Proof: Define D =P -Q = (X,Y).

1

. Ym Y
Since Q =P -D =(x,,,Y,_,) wehave x_ = - X, = X.

Then X, (X, = x)" = (y, + ¥)" = (X, + X)(x, = x)°

2 2 3 3 2 2
Yo T Y 2y Y= (X, X =X X=X X,)

2y, ¥y + (A+Xx X)X, +X)+2B

2y, Yy = x,,(x, 7X)27(A+ X X)X, +Xx)-2B

= 2B = (A+ x, X)X, +X)+ X, (x, - x)2

Yo =
2y

— 2B + (A+ x X)X +X)-X X - x)?
ThEI’efOI‘e ym = [ ( m )( m ) m—l( m ) ]

2y
FAST COMPUTATION METHOD FOR x_, AND z_:

We describe the fast computation method to compute X, and z_, suggested by P. Smith for

Lucas sequences [131 and this method directly leads to the computation of [X, :Z_ 1 with no
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ambiguity of adding or doubling at each stage right from [X,:Z,] by using the above recursive

formulas.

For any integer e, we have the binary expression given as

t
e=Yx2"x,=1x =0 orl,forizxo
t=0

k
Let e, =Y x2" " for 0<k<t,then e =ee =1.
i=0

[ 2e, ifx,,, =0
Theorem 3: e, , =
[2e,+1 ifx,, =1
k+1

% _ k+1-i
Proof:  We have e, = x,2
i=0
k+1-k-1

k
=2Y x2" "+ x, ;2
i=0

k
_ k—i
=2 %2+ X,
i=0

=2e, + X,
[ 2e, ifx,,, =0
Therefore e, , =4
(2e, +1 ifx, 6 =1
[ 2e, +1 if x,,=0

Remark 2: e,  +1=
[2(e, +1) if x ., =1
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Remark 3: [X_ :z ] arecomputed by evaluating [X, :z_] for k =01,., t by using recursive
k k

formulas for [X 26 1 z 2ek+1]

and [X, 12, 1

Remark 4: For any point M € E(zZ,) where n = pg , we have the point
M = (M mod p,M mod q) as E(Z ,); E(Z,)® E(z,) and we have the formulas in Theorems

1 and 3 are valid for M on E(z ). 141111

Notation: For any point M € E(Z,) we write as M = (M ,M ) and for any integer k, X

k

the point kM is written as kM = (M, .M ).

4 SIGNATURE SCHEME ON CRYPTOSYSTEM WITH ELLIPTIC CURVES:

Let message be a point M = (M M ) on an elliptic cmve E(Z ):y’ = x* + Ax + Bmod n, where

n=pq andlet #E(Z )= N _, (e,N ) =1 with d suchthat ed =1mod N_  and (M, n,e) ispublic
The aim of cryptanalyst is to obtain signature dM = (M, ., M ;).

The eryptanalyst adapts the following steps in the signature scheme :
Let k bean integer such that (k,e) =1 and (k,N ) =1, then thereexist r,s such that kr +es =1.
let M= kM =k(M M )=(M M, ) and M’ may beevaluated using point addition with
projective coordinates.
Obtain the signature on M ' as follows:

dM’'= (M} M )ymod n andlet C'=dM "mod n;
Evaluate the point rC’ and sM  using the point addition with projective coordinates.
The eryptanalyst obtains dM  as follows:

‘We have

kr +es =1

krd +eds =d
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krd +s=dmod N,

d = (krd +s)+ N tfor some integer t.

Therefore  the point addition dM = [(krd +s)+ N t]M

(krd+s)M

krdM + sM

r(dM ") + sM .

rc'+smM

Using step 4 point dM  is obtained by affine addition of rC’'+ sM .

Example: let n=pg =143 and M = (1,122) be a point on Elliptic curve

E(Z,):y =x"+3x+8mod 143 andfor N, =# E(Z,)=14 ,take e=5,as (5144) =1.

143

Then we have (M ,n,e), the public key and d the secrete exponent such that

ed =1mod N .

The cryptanalyst obtain the signature dM  as follows:

Let k =7 be an integer such that (k,e) = (7,5) =1, then there exist integers r = -2, s = 3

such that kr +es = 1.

Consider M'=kM =7M and M’ isevaluated by using point addition with projective
coordinates as follows:

7=1.241.2"+1.2°

2e

X, =(XZ-AzZ2)" -8BXx, z@6 =83,
0 0 0 0 0

z, =4z, (X} +AXx_ z!
0 0 0

+BZ )= 48
0

0 0
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e 58
Therefore x(7M )= —% = — = 67 mod 143,
VA

Torecover y(7 M )as follows

X, 4= X 1:(X:—A292)2—SBXEZE3:79.

z, =2, =4z (x +Axez:+Bz:):16
2 1 1 1 1 1
Xe271 79
X(6M ) = = — =139 mod 143.
z 16

Forx=x(M)=1 x, =x(7M)=67 and x_,  , = x(6M ) =139

y=yaM) = —[28+(A+xmx)(xm+x)—xm_1(xm—x) ]: T
2y
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ThereforM '=7M = (67-23)=(67,120)
Cryptanalyst obtain the signature on M ' as

C'=dM = (M} M} )= (12937
Now the cryptanalyst computes rC’,sM ' as follows:

rc' = —2(129,37).

X, =129and Z, =1.

0 0
2
X, =X,, :(x: —az:) —8bx , z] =107.
1 0 0 0 0 0
z, =2, =4z, (xj +ax , z! +bz:):42.
1 0 0 0 0 0 0
X 107
X = = —=
z 42

For x, =40, x =1and x_ , =1 we have

_ f[ZB+(A+xmx)(xm +X) =X, L (x, fx)z]_

. 41.
2y
Therefore rC' = (40,47).
sM =3M = 3(1,122).
X, =12z, =1
0 0
2
X =X, =(x*-az?)-8bx_ 2z’ =83
e, +1 2e ( eo a eo) eo eU
z,,=2, =4z (x +ax , z! +sz):48
0 0 0 0 0
2
Xe1 = X260+1 = _4bz eOZeO+1(xe +lze0 + X Ozeo+1)+ (Xe +1Xe0 _aze +lze0)
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X
Zel = 2290+1_ (Xe0+lzeo Xeozeo+1)2 _81
X, 131
X = = —— =74 mod 143.
Z 81

83
For x, =74, x =1and x_ _, = — =106, we have
48

_ 7[28+(A+xmx)(xm +x) =X, (X, fx)z]_

59.

m

2y

Therefore sM = (74,59).

The cryptanalyst obtain dM = rC'+sM as follows:
By using point addition with affine coordinates,
rC'+sM = (40,47) + (7459) = (41,62.

Therefore the cryptanalyst retrieve the signature as (41,62)

CONCLUSION:

In the signature scheme on Cryptosystem with elliptic curves implemented by point addition with
projective coordinates for P = (x,y) with projective coordinates (X ,Y,,Z,) itrequiresonly four
additions, six multiplications and two squarings with no inversions in the computations of

[X,:Z,] ateach consecutive addition leading to the projective coordinates (X, :Y, :Z,) and the

x(kP) = —< 1is obtained with one inversion and the corresponding y -coordinate is recovered with
Z
k

five additions, four multiplications and one inversion. Also the fast computation method directly
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leads to the computation of [X, :Z,] with no ambiguity of adding or doubling at each stage right

from [X,:Z,] by using the recursive formulas.
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