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ABSTRACT 

 

In this paper we capture the well defined uniqueness and wholeness of the autotopism 

property of the Moufang elements. 
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INTRODUCTION: 

An inverse property Loop 𝐿, such that its elements satisfy the property   𝑢𝑥  𝑦𝑢 =

[𝑢 𝑥𝑦 𝑢] for all 𝑥, 𝑦 ∈ 𝐿 is called a Moufang loop and its elements are called Moufang 

elements. We shall be considering the autotopism property of the loop 𝐿. Several works have 

been presented by Bruck [1],. Pflugfelder[2], Drapal [3]and others. 

We shall however here be considering in details the explicitcomputation of such elements. 

BASIC DEFINITIONS: 

 

Definition 1:  

 A groupoid 𝐺 is said to have the left inverse property if for each 𝑥 ∈ 𝐺 there is atleast one 

𝑎 ∈ 𝐺 such that 

𝑎 𝑥𝑦 = 𝑦 for all 𝑦 ∈ 𝐺. i.e 𝐿 𝑥 𝐿 𝑎 = 𝐼 

 

𝐺 is said to have the right inverse property if for each 𝑥 ∈ 𝐺 there is atleast one 𝑏 ∈ 𝐺 such 

that  𝑦𝑥 𝑏 = 𝑦 for all 𝑦 ∈ 𝐺. i.e 𝑅 𝑥 𝑅 𝑎 = 𝐼 

If  𝐺 has both the the left inverse property and the the right inverse propert, then  𝐺 is said to 

have the inverse property. It is also called IP-loop. 
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Definition 2: 

A triple (𝛼, 𝛽, 𝛾) of bijecttions is called an isotopism of Loop (𝐿,∙) onto a loop (𝐻, °) 

provided 

𝑥 𝛼°𝑦𝛽 = (𝑥 ∙ 𝑦)𝛾 for all 𝑥, 𝑦 ∈ 𝐿. 

 

Definition 3: 

An isotopism of (𝐿,∙) onto a loop (𝐿,∙) is called an autotopism of 𝐿 and is denoted 𝐴(𝐿). 

 

 

MAIN WORK: 

Theorem1: 

Let A(p) = (L p , R p , L p R(p)) 

Claim 1: 

A(p) is an autotopism and so is 𝐴(𝑝)−1. 

Proof of Claim 1: 

By definition *** we have that : 

𝑥𝐿 𝑝 ∙ 𝑦𝑅 𝑝 =  𝑝𝑥 ∙  𝑦𝑝 =  𝑝 𝑥𝑦 𝑝 =  𝑥𝑦 𝐿 𝑝 𝑅(𝑝). 

Therefore A(p) is an autotopism  

Claim 2: 

𝐴(𝑝)−1 is an autotopism 

Proof of Claim 2: 

Now 

𝐴(𝑝)−1 = [L p , R p , L p R p ]−1 

= (𝐿 𝑝 −1, 𝑅 𝑝 −1,  L p R p  −1)  
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Claim 2i: 

𝐿 𝑝 −1 = 𝐿(𝑝−1)  and 𝑅(𝑝)−1 = 𝑅(𝑝−1) 

Proof of Claim 2i: 

Now the fact (𝑥𝑦)−1 = 𝑦−1𝑥−1 obviously means 𝑅(𝑥)−1 = 𝑅(𝑥−1) 

In the same argument  (𝑦𝑥)−1 = 𝑥−1𝑦−1 means 𝐿(𝑥)−1 = 𝐿(𝑥−1) 

So we have by definition *** that  and the proof of Claim2i that: 

𝑥𝐿 𝑝 −1 ∙ 𝑦𝑅 𝑝 −1 = 𝑥𝐿(𝑝−1) ∙ 𝑦𝑅(𝑝−1) 

= (𝑝−1𝑥) ∙ (𝑦𝑝−1) 

= 𝑝−1(𝑥𝑦)𝑝−1 

= (𝑥𝑦)𝐿(𝑝−1)𝑅(𝑝−1) 

= (𝑥𝑦)𝐿 𝑝 −1𝑅(𝑝)−1 

Therefore 𝐴(𝑝)−1 is an autotopism.  

Hence the prove of theorem 1. 

Theorem 2: 

Let A(p) be as define in Theorem 1; 

Claim 2:  

i. A(q, p) is an autotopism 

ii. 𝐴(𝑝)−1𝐴(𝑞)−1𝐴(𝑞−1𝑝−1)−1 is an autotopism 

Proof of Claim 2i: 

A similar step with the proof for Theorem 1 will be used here but we would be requiring the 

knowledge of component wise multiplication. 

So  we would have that: 

A q, p = A p A q  
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=  L p , R p , L p R p  [L q , R q , L q R q ] 

=  L q L p , R q R p , L q R q L p R p   

= xL q L p ∙ 𝑦R q R p  

= 𝑝𝑞𝑥 ∙ 𝑦𝑞𝑝 

= 𝑝𝑞(𝑥𝑦)𝑞𝑝 

= (𝑥𝑦)L q R q L p R p  

Thus A q, p  is an autotopism. 

Proof of Claim 2ii: 

Now  

𝐴(𝑝)−1 = [L p , R p , L p R p ]−1 

= [𝐿 𝑝−1 , 𝑅 𝑝−1 , 𝐿 𝑝−1 𝑅(𝑝−1)] 

𝐴(𝑞)−1 = [L q , R q , L q R q ]−1 

= [𝐿 𝑞−1 , 𝑅 𝑞−1 , 𝐿 𝑞−1 𝑅(𝑞−1)] 

𝐴(𝑞−1𝑝−1)−1 = [L 𝑞−1𝑝−1 , R 𝑞−1𝑝−1 , L 𝑞−1𝑝−1 R 𝑞−1𝑝−1 ]−1 

= [𝐿 𝑞−1𝑝−1 −1, 𝑅 𝑞−1𝑝−1 −1, 𝐿 𝑞−1𝑝−1 −1𝑅 𝑞−1𝑝−1 −1 

Our goal is to show that 𝐴(𝑝)−1𝐴(𝑞)−1𝐴(𝑞−1𝑝−1)−1 is an autotopism, 

So we have that ; 

𝐴(𝑝)−1𝐴(𝑞)−1𝐴(𝑞−1𝑝−1)−1

=  [L p , R p , L p R p ]−1[L q , R q , L q R q ]−1[𝐿 𝑞−1𝑝−1 −1, 𝑅 𝑞−1𝑝−1 −1, 𝐿 𝑞−1𝑝−1 −1𝑅 𝑞−1𝑝−1 −1] 

= [𝐿 𝑝−1 , 𝑅 𝑝−1 , 𝐿 𝑝−1 𝑅(𝑝−1)][𝐿 𝑞−1 , 𝑅 𝑞−1 , 𝐿 𝑞−1 𝑅(𝑞−1)][𝐿 𝑞−1𝑝−1 −1 , 𝑅 𝑞−1𝑝−1 −1, 𝐿 𝑞−1𝑝−1 −1𝑅 𝑞−1𝑝−1 −1 

= [𝐿 𝑝−1 𝐿 𝑞−1  𝐿 𝑞−1𝑝−1 −1, 𝑅 𝑝−1 𝑅 𝑞−1  𝑅 𝑞−1𝑝−1 −1, 𝐿 𝑝−1 𝑅(𝑝−1)𝐿 𝑞−1 𝑅(𝑞−1)𝐿 𝑞−1𝑝−1 −1𝑅 𝑞−1𝑝−1 −1] 

Set 

S = 𝐿 𝑝−1 𝐿 𝑞−1  𝐿 𝑞−1𝑝−1 −1 = 𝐿(𝑝−1 , 𝑞−1),  

𝑇 = 𝑅 𝑝−1 𝑅 𝑞−1  𝑅 𝑞−1𝑝−1 −1 = 𝑅(𝑝−1, 𝑞−1),  

𝑋 = 𝐿 𝑝−1 𝑅(𝑝−1)𝐿 𝑞−1 𝑅(𝑞−1)𝐿 𝑞−1𝑝−1 −1𝑅 𝑞−1𝑝−1 −1 = 𝑆𝑇. 

So using definition ***  we have that: 

xS ∙ 𝑦𝑇 =  𝑞−1𝑝−1 −1𝑞−1𝑝−1𝑥 ∙ 𝑦𝑝−1𝑞−1 𝑞−1𝑝−1 −1 
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= [ 𝑞−1𝑝−1 −1𝑞−1𝑝−1] 𝑥𝑦 [𝑝−1𝑞−1 𝑞−1𝑝−1 −1] 

= (𝑥𝑦) 𝐿 𝑝−1 𝑅(𝑝−1)𝐿 𝑞−1 𝑅(𝑞−1)𝐿 𝑞−1𝑝−1 −1𝑅 𝑞−1𝑝−1 −1 

=  𝑥𝑦 𝑋 

Thus 𝐴(𝑝)−1𝐴(𝑞)−1𝐴(𝑞−1𝑝−1)−1 is an autotopism as required. 

 

CONCLUSION: 

The aspect of autotopism of Loops is today a very viable research area as it extends to 

Pseudo-automorphisms. This paper has succeeded in presenting in details and emphasising 

major  aspects  in autotopism. 
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